Skip to main content

Advertisement

Log in

Seeing the forest not for the carbon: why concentrating on land-use-induced carbon stock changes of soils in Brazil can be climate-unfriendly

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Soil carbon stocks of 29 plots along a transect through tropical Brazil showed only minor soil carbon losses after land use shift, although replacement of forest-derived carbon was detectable in subsoil and topsoil, indicating that new equilibria in soil carbon stocks might not have been reached after deforestation. The proportion of carbon lost from soils was negligible as compared to the emissions from biomass reduction by deforestation itself. Industrial agriculture had the best ratio between food production and carbon loss, pointing toward a potential reduction of deforestation pressure by further agricultural intensification, which is not achieved in practice due to institutional obstacles and uneven benefit sharing. In contrast, farmers at the agricultural frontier were identified as change agents if alternative sustainable land uses, taking advantage of biodiversity-related ecosystem services, are fostered by better access to credit lines and extension management. Thus, constraining the climate change debate in agriculture to sole management of carbon stock changes in soil is misleading and draws the attention from the most urgent problems: deforestation caused by wrong incentives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlstrom A, Xia J, Arneth A, Luo Y, Smith B (2015) Importance of vegetation dynamics for future terrestrial carbon cycling. Environ Res Lett. doi:10.1088/1748-9326/10/5/054019

    Google Scholar 

  • Anderson JR, Alexandratos N (1996) World agriculture: towards 2010: an FAO study. Am J Agric Econ 78(1):246–247. doi:10.2307/1243795

    Article  Google Scholar 

  • Angelsen A, Kaimowitz D (2001) Agricultural technologies and tropical deforestation. CIFOR

  • Ashagrie Y, Zech W, Guggenberger G (2005) Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregate-size fractions. Agric Ecosyst Environ 106(1):89–98. doi:10.1016/j.agee.2004.07.015

    Article  CAS  Google Scholar 

  • Barni PE, Fearnside PM, de Alencastro Lima, Graca PM (2015) Simulating deforestation and carbon loss in Amazonia: impacts in Brazil’s Roraima State from Reconstructing Highway BR-319 (Manaus-Porto Velho). Environ Manag 55(2):259–278. doi:10.1007/s00267-014-0408-6

    Article  Google Scholar 

  • Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137(1–2):47–58. doi:10.1016/j.agee.2010.02.003

    Article  CAS  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86(2):237–245. doi:10.1016/j.still.2005.02.023

    Article  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185(2):543–553. doi:10.1111/j.1469-8137.2009.03069.x

    Article  CAS  Google Scholar 

  • Benatti JH (2011) Regularizacao fundiaria na Amazonia no contexto das mundancas climaticas. In: Teles da Silva S, Cureau S, Dieguez Leuzinger M (eds) Mudanca do Clima: Desafios juridicos, economicos e socioambientais., vol 2. Colecao Direito e Desenvolvimento Sustentavel. editora FiUZA, Rio de Janeiro, pp 202-214  

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82(1–3):43–58. doi:10.1016/s0016-7061(97)00096-7

    Article  Google Scholar 

  • Bowman MS, Soares-Filho BS, Merry FD, Nepstad DC, Rodrigues H, Almeida OT (2012) Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29(3):558–568. doi:10.1016/j.landusepol.2011.09.009

    Article  Google Scholar 

  • Boy J, Wilcke W (2008) Tropical Andean forest derives calcium and magnesium from Saharan dust. Glob Biogeochem Cycles. doi:10.1029/2007gb002960

    Google Scholar 

  • Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008a) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles. doi:10.1029/2007gb003158

    Google Scholar 

  • Boy J, Valarezo C, Wilcke W (2008b) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59(6):1209–1227. doi:10.1111/j.1365-2389.2008.01063.x

    Article  CAS  Google Scholar 

  • Brando PM, Coe MT, DeFries R, Azevedo AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philos Trans R Soc B Biol Sci. doi:10.1098/rstb.2012.0152

    Google Scholar 

  • Braz SP, Urquiaga S, Alves BJR, Jantalia CP, Guimaraes AP, dos Santos CA, dos Santos SC, Machado Pinheiro EF, Boddey RM (2013) Soil carbon stocks under productive and degraded brachiaria pastures in the Brazilian cerrado. Soil Sci Soc Am J 77(3):914–928. doi:10.2136/sssaj2012.0269

    Article  CAS  Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vasquez Martinez R, Alexiades M, Alvarez Davila E, Alvarez-Loayza P, Andrade A, Aragao LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard C GA, Banki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Herault B, Higuchi N, Coronado ENH, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Nunez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Pena-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramirez F, Ramirez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomao RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, Van der Heijden GMF, Van der Hout P, Vieira ICG, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519 (7543): 344−+. doi:10.1038/nature14283

  • Coy M, Klingler M (2014) Frentes pioneiras em transformacao: o eixo de BR-163 e os desafios socioambentais. Rev Territ e Front 7(1):1–26

    Article  Google Scholar 

  • da Silva JE, Resck DVS, Corazza EJ, Vivaldi L (2004) Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil. Agric Ecosyst Environ 103(2):357–363. doi:10.1016/j.agee.2003.12.007

    Article  Google Scholar 

  • da Silva HA, de Moraes A, de Faccio Carvalho PC, da Fonseca AF, dos Santos Dias CT (2012) Maize and soybeans production in integrated system under no-tillage with different pasture combinations and animal categories. Rev Cienc Agron 43(4):757–765

    Article  Google Scholar 

  • de Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70(1):63–81. doi:10.1016/0016-7061(95)00072-0

    Article  Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA 99(22):14256–14261. doi:10.1073/pnas.182560099

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17(4):1658–1670. doi:10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrastin managmenet regimes. Can J soil Sci 529–538

  • Exbrayat J-F, Williams M (2015) Quantifying the net contribution of the historical Amazonian deforestation to climate change. Geophys Res Lett 42(8):2968–2976. doi:10.1002/2015gl063497

    Article  Google Scholar 

  • Fankhauser S, Gennaioli C, Collins M (2015) The political economy of passing climate change legislation: evidence from a survey. Glob Environ Change 35:52–61. doi:10.1016/j.gloenvcha.2015.08.008

    Article  Google Scholar 

  • Fearnside PM (2007) Brazil’s Cuiaba-Santarem (BR-163) Highway: the environmental cost of paving a soybean corridor through the amazon. Environ Manag 39(5):601–614. doi:10.1007/s00267-006-0149-2

    Article  Google Scholar 

  • Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7(3):149–157. doi:10.1111/conl.12084

    Article  Google Scholar 

  • Franchini JC, Debiasi H, Balbinot Junior AA, Tonon BC, Boucas Farias JR, Neves de Oliveira MC, Torres E (2012) Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Res 137:178–185. doi:10.1016/j.fcr.2012.09.003

    Article  Google Scholar 

  • Franchini JC, Balbinot Junior AA, Sichieri FR, Debiasi H, Conte O (2014) Yield of soybean, pasture and wood in integrated crop-livestock-forest system in Northwestern Parana state, Brazil. Rev Cienc Agron 45(5):1006–1013

    Article  Google Scholar 

  • Fujisaki K, Perrin A-S, Desjardins T, Bernoux M, Balbino LC, Brossard M (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Change Biol 21(7):2773–2786. doi:10.1111/gcb.12906

    Article  Google Scholar 

  • Galford GL, Soares-Filho B, Cerri CEP (2013) Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon. Philos Trans R Soc B Biol Sci. doi:10.1098/rstb.2012.0171

    Google Scholar 

  • Gil J, Siebold M, Berger T (2015) Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agric Ecosyst Environ 199:394–406. doi:10.1016/j.agee.2014.10.008

    Article  Google Scholar 

  • Gill M, Feliciano D, Macdiarmid J, Smith P (2015) The environmental impact of nutrition transition in three case study countries. Food Secur 7(3):493–504. doi:10.1007/s12571-015-0453-x

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Gollnow F, Lakes T (2014) Policy change, land use, and agriculture: the case of soy production and cattle ranching in Brazil, 2001-2012. Appl Geogr 55:203–211. doi:10.1016/j.apgeog.2014.09.003

    Article  Google Scholar 

  • Grenz J, Vetouli T, Tzitzikli E, Sauerborn J (2007) The ecological consequences of the global soybean economy: resource and value flows in Argentina, Brazil, and Germany. Gaia Ecol Perspect Sci Soc 16(3):208–214

    Google Scholar 

  • Henri DC, Jones O, Tsiattalos A, Thebault E, Seymour CL, van Veen FJF (2015) Natural vegetation benefits synergistic control of the three main insect and pathogen pests of a fruit crop in southern Africa. J Appl Ecol 52(4):1092–1101. doi:10.1111/1365-2664.12465

    Article  Google Scholar 

  • Hohnwald S, Rischkowsky B, Camarao AP, Schultze-Kraft R, Rodrigues Filho JA, King JM (2006) Integrating cattle into the slash-and-burn cycle on smallholdings in the Eastern Amazon, using grass-capoeira or grass-legume pastures. Agric Ecosyst Environ 117(4):266–276. doi:10.1016/j.agee.2006.04.014

    Article  Google Scholar 

  • Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quere C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142. doi:10.5194/bg-9-5125-2012

    Article  CAS  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatistica  (2012) Manual Técnico da Vegetação Brasileira. Rio de Janeiro  

  • Kammerbauer J, Cordoba B, Escolan R, Flores S, Ramirez V, Zeledon J (2001) Identification of development indicators in tropical mountainous regions and some implications for natural resource policy designs: an integrated community case study. Ecol Econ 36(1):45–60. doi:10.1016/s0921-8009(00)00206-8

    Article  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manage 246(2–3):208–221. doi:10.1016/j.foreco.2007.03.072

    Article  Google Scholar 

  • Koutika LS, Bartoli F, Andreux F, Cerri CC, Burtin G, Chone T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma 76(1–2):87–112. doi:10.1016/s0016-7061(96)00105-x

    Article  Google Scholar 

  • Lagerstrom A, Nilsson M-C, Wardle DA (2013) Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. Plant Soil 367(1–2):183–197. doi:10.1007/s11104-012-1159-x

    Article  Google Scholar 

  • Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):276–285. doi:10.2489/jswc.66.4.276

    Article  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241. doi:10.1146/annurev.energy.28.050302.105459

    Article  Google Scholar 

  • Lathuilliere MJ, Johnson MS, Galford GL, Couto EG (2014) Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environ Res Lett. doi:10.1088/1748-9326/9/7/074001

    Google Scholar 

  • Laurance WF, Koster H, Grooten M, Anderson AB, Zuidema PA, Zwick S, Zagt RJ, Lynam AJ, Linkie M, Anten NPR (2012) Making conservation research more relevant for conservation practitioners. Biol Conserv 153:164–168. doi:10.1016/j.biocon.2012.05.012

    Article  Google Scholar 

  • Lee JSH, Garcia-Ulloa J, Ghazoul J, Obidzinski K, Koh LP (2014) Modelling environmental and socio-economic trade-offs associated with land-sparing and land-sharing approaches to oil palm expansion. J Appl Ecol 51(5):1366–1377. doi:10.1111/1365-2664.12286

    Article  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(6250):827–832. doi:10.1126/science.aaa9932

    Article  CAS  Google Scholar 

  • Lindgren PMF, Sullivan TP (2014) Response of forage yield and quality to thinning and fertilization of young forests: implications for silvopasture management. Can J For Res Rev Can Rech For 44(4):281–289. doi:10.1139/cjfr-2013-0248

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34(2):443–454. doi:10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Marchao RL, Becquer T, Brunet D, Balbino LC, Vilela L, Brossard M (2009) Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop-livestock management systems. Soil Tillage Res 103(2):442–450. doi:10.1016/j.still.2008.11.002

    Article  Google Scholar 

  • Miranda E, Carmo J, Couto E, Camargo P (2016) Long-term changes in soil carbon stocks in the Brazilian Cerrado under commercial soybean. Land Degrad Dev. doi:10.1002/ldr.2473

    Google Scholar 

  • Mosquera-Losada MR, Rodríguez-Barreira S, López-Díaz ML, Fernández-Núñez E, Rigueiro-Rodríguez A (2009) Biodiversity and silvopastoral system use change in very acid soils. Agric Ecosyst Environ 131(3–4):315–324. doi:10.1016/j.agee.2009.02.005

    Article  Google Scholar 

  • Mota L, Boton D, Fonseca R, Silva W, Souza A (2013) Balanço hídrico climatológico e classificação climática da região de Sinop, Mato Grosso. Scie Electron Arch Sinop 3(2):38–44

    Google Scholar 

  • Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the C-13 natural abundance method. Geoderma 138(1–2):133–143. doi:10.1016/j.geoderma.2006.11.002

    Article  CAS  Google Scholar 

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8(2):105–123. doi:10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  • Pacheco P (2009) Agrarian reform in the Brazilian Amazon: its implications for land distribution and deforestation. World Dev 37(8):1337–1347. doi:10.1016/j.worlddev.2008.08.019

    Article  Google Scholar 

  • Pacheco P, Benatti JH (2015) Tenure security and land appropriation under changing environmental governance in lowland Bolivia and para. Forests 6(2):464–491. doi:10.3390/f6020464

    Article  Google Scholar 

  • Paul C, Knoke T (2015) Between land sharing and land sparing—what role remains for forest management and conservation? Int For Rev 17(2):210–230

    Google Scholar 

  • Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW, Stattersfield AJ, Balmford A (2013) Crop expansion and conservation priorities in tropical countries. PLoS One. doi:10.1371/journal.pone.0051759

    Google Scholar 

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08.003

    Article  CAS  Google Scholar 

  • Porder S, Chadwick OA (2009) Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology 90(3):623–636. doi:10.1890/07-1739.1

    Article  Google Scholar 

  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change 4(8):678–683. doi:10.1038/nclimate2292

    Article  Google Scholar 

  • Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Manage 232(1–3):168–178. doi:10.1016/j.foreco.2006.05.067

    Article  Google Scholar 

  • Richards PD, Walker RT, Arima EY (2014) Spatially complex land change: the Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob Environ Change 29:1–9. doi:10.1016/j.gloenvcha.2014.06.011

    Article  Google Scholar 

  • Roscoe R, Buurman P (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Tillage Res 70(2):107–119. doi:10.1016/s0167-1987(02)00160-5

    Article  Google Scholar 

  • Rumpel C (2014) Opportunities and threats of deep soil organic matter storage. Carbon Manag 5(2):115–117

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/nature10386

    Article  CAS  Google Scholar 

  • Schönenberg R, Hartberger K, Schumann C, Benatti JH, Fischer LdC (2015) What comes after deforestation control? Learning from three attempts of land-use planning in Southern Amazonia. Gaia Ecol Perspect Sci Soc 24(2):119–127

    Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Koegel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691. doi:10.5194/bg-10-1675-2013

    Article  CAS  Google Scholar 

  • Schumann C, Hartberger K, Klingler M, Schönenberg R (2015) Sempre pra, Frente edn. Olhares, Sao Paulo

    Google Scholar 

  • Smilovic M, Gleeson T, Siebert S (2015) The limits of increasing food production with irrigation in India. Food Secur 7(4):835–856. doi:10.1007/s12571-015-0477-2

    Article  Google Scholar 

  • Stahl C, Herault B, Rossi V, Burban B, Brechet C, Bonal D (2013) Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter? Oecologia 173(4):1191–1201. doi:10.1007/s00442-013-2724-6

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Courcelles VdR, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi:10.1016/j.agee.2012.10.001

    Article  CAS  Google Scholar 

  • Stoll-Kleemann S, O’Riordan T (2015) The sustainability challenges of our meat and dairy diets. Environment 57(3):34–48. doi:10.1080/00139157.2015.1025644

    Google Scholar 

  • Strey S, Boy J, Strey R, Weber O, Guggenberger G (2016) Response of soil organic carbon to land-use change in central Brazil: a large scale comparison of Farralsols and Acrisols. Plant Soil. doi:10.1007/s11104-016-2901-6

    Google Scholar 

  • Tremblay S, Lucotte M, Reveret J-P, Davidson R, Mertens F, Sousas Passos CJ, Romana CA (2015) Agroforestry systems as a profitable alternative to slash and burn practices in small-scale agriculture of the Brazilian Amazon. Agrofor Syst 89(2):193–204. doi:10.1007/s10457-014-9753-y

    Article  Google Scholar 

  • van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303(1–2):35–47. doi:10.1007/s11104-007-9513-0

    Article  Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci Z Fur Pflanzenernahr Und Bodenkunde 171(1):111–124. doi:10.1002/jpln.200700047

    Article  Google Scholar 

  • White D, Holmann F, Fujisaka S, Reategui K, Lascano C (2001) Will intensifying pasture management in Latin America protect forests – or is it the other way round? In: Angelsen A, Kaimowitz D (eds) Agricultural technologies and tropical deforestation. CAB International, Oxon, UK, pp 91–113  

  • Wilcke W, Guenter S, Alt F, Geissler C, Boy J, Knuth J, Oelmann Y, Weber M, Valarezo C, Mosandl R (2009) Response of water and nutrient fluxes to improvement fellings in a tropical montane forest in Ecuador. For Ecol Manag 257(4):1292–1304. doi:10.1016/j.foreco.2008.11.036

    Article  Google Scholar 

  • Zhang K, Castanho ADdA, Galbraith DR, Moghim S, Levine NM, Bras RL, Coe MT, Costa MH, Malhi Y, Longo M, Knox RG, McKnight S, Wang J, Moorcroft PR (2015) The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use. Glob Change Biol 21(7):2569–2587. doi:10.1111/gcb.12903

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out in the framework of the interdisciplinary project CarBioCial funded by the German Ministry of Education and Research (BMBF) in the FONA-line, under the grant number 01LL0902F. We want to thank the Brazilian counterpart project Carbioma (UFMT, UFPA-NAEA, Embrapa Arroz e Feijão) for collaboration, all involved farmers, stakeholders, and Brazilian scientific colleagues for their creative contributions, support and their patience during the sampling campaign. We express our gratitude to the Kayapó people that allowed us on their territory and accompanied our research activities with interest and understanding. Without the cooperation of their Institute Kabu, important data presented here could not have been collected. Our gratitude also belongs to the anonymous reviewers for their support to improve the manuscript, and Silke Bokeloh and Steffen Söffker for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Boy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boy, J., Strey, S., Schönenberg, R. et al. Seeing the forest not for the carbon: why concentrating on land-use-induced carbon stock changes of soils in Brazil can be climate-unfriendly. Reg Environ Change 18, 63–75 (2018). https://doi.org/10.1007/s10113-016-1008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1008-1

Keywords

Navigation