Regional Environmental Change

, Volume 17, Issue 7, pp 2039–2053 | Cite as

The Selenga River delta: a geochemical barrier protecting Lake Baikal waters

  • Sergey Chalov
  • Josefin Thorslund
  • Nikolay Kasimov
  • Denis Aybullatov
  • Elena Ilyicheva
  • Daniel Karthe
  • Alexey Kositsky
  • Mikhail Lychagin
  • Jeff Nittrouer
  • Maxim Pavlov
  • Jan Pietron
  • Galina Shinkareva
  • Mikhail Tarasov
  • Endon Garmaev
  • Yosef Akhtman
  • Jerker Jarsjö
Original Article

Abstract

The protection of Lake Baikal and the planning of water management measures in the Selenga River Basin require a comprehensive understanding of the current state and functioning of the delta’s ecosystem and hydrogeochemical processes. This is particularly relevant in light of recent and expected future changes involving both the hydrology and water quality in the Lake Baikal basin causing spatiotemporal changes in water flow, morphology, and transport of sediments and metals in the Selenga River delta and thus impacting on delta barrier functions. The central part of the delta had been characterized by sediment storage, especially along the main channels, causing a continuous lift of the delta surface by about 0.75 cm/year−1. Theses morphological changes have a significant impact on hydrological conditions, with historical shifts in the bulk discharge from the left to the right parts of the delta which is distinguished by a relatively high density of wetlands. Regions with a high density of wetlands and small channels, in contrast to main channel regions, show a consistent pattern of considerable contaminant filtering and removal (between 77 and 99 % for key metals), during both high-flow and low-flow conditions. The removal is associated with a significant concentration increase (2–3 times) of these substances in the bottom sediment. In consequence, geomorphological processes, which govern the partitioning of flow between different channel systems, may therefore directly govern the barrier function of the delta.

Keywords

Delta Lake Baikal Geochemical barrier Sediment loads Wetlands 

Supplementary material

10113_2016_996_MOESM1_ESM.docx (667 kb)
Supplementary material 1 (DOCX 667 kb)

References

  1. Ajao EA, Anurigwo S (2002) Land-based sources of pollution in the Niger Delta, Nigeria. Ambio 31:442–445. doi:10.1579/0044-7447-31.5.442 CrossRefGoogle Scholar
  2. Akhtman Y, Constantin D, Rehak M, Nouchi V, Shinkareva G, Bouffard D, Pasche N, Chalov S, Lemmin U, Merminod B (2014) Télédétection multi-échelle des lacs depuis un aéronef ultraléger motorisé. Géomatique Suisse 9:395–398Google Scholar
  3. Alexeevsky NI, Chalov RS, Berkovich KM, Chalov SR (2013) Channel changes in largest Russian rivers: natural and anthropogenic effects. Int J River Basin Manag 11(2):75–191. doi:10.1080/15715124.2013.814660 CrossRefGoogle Scholar
  4. Aynbund MM, Davtyan NA, Sudolsky AS, Fialkov VA (1975) Research of rivers mouths dynamics and delta sites of water reservoirs on the example of the Selenga River and the lake Baikal In: Proceedings of IV Vsesoyuz. Hydr. Congress. Hydrology of lakes, reservoirs and mouths of the rivers, vol 5, pp 356–365Google Scholar
  5. Brumbaugh WG, Tillitt DE, May TW, Javzan CH, Komov VT (2013) Environmental survey in the Tuul and Orkhon river basins of northcentral Mongolia, 2010: metals and other elements in streambed sediment and floodplain soil. Environ Monit Assess 185:8991–9008. doi:10.1007/s10661-013-3229-9 CrossRefGoogle Scholar
  6. Buschmann J, Berg M, Stegel C, Sampson M (2007) Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography. Environ Sci Technol 41(7):2146–2152. doi:10.1021/es062056k CrossRefGoogle Scholar
  7. Chalov SR, Alexeevsky NI (2015) Braided rivers: structure, types and hydrological effects. Hydrol Res 46(2):258–275. doi:10.2166/nh.2013.023 CrossRefGoogle Scholar
  8. Chalov SR, Zavadsky AS, Belozerova EV, Bulacheva MP, Jarsjo J, Thorslund J, Yamkhin J (2012) Suspended and dissolved matter fluxes in the upper Selenga River Basin. Geogr Environ Sustain 5(2):78–94CrossRefGoogle Scholar
  9. Chalov SR, Kasimov N, Lychagin M, Alexeevsky N, Belozerova E, Theuring P, Shinkareva G, Romanchenko A, Garmaev E (2013) Water resources assessment of the Selenga–Baikal river system. GeoÖko 34:77–102Google Scholar
  10. Chalov SR, Jarsjö J, Kasimov N, Romanchenko A, Pietron J, Thorslund J, Belozerova E (2015) Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ Earth Sci 72(2):663–680. doi:10.1007/s12665-014-3106-z CrossRefGoogle Scholar
  11. Chatterjee M, Massolo S, Sarkar SK, Bhattacharya AK, Bhattacharya BD, Satpathy KK, Saha S (2009) An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environ Monit Assess 150(1–4):307–322. doi:10.1007/s10661-008-0232-7 CrossRefGoogle Scholar
  12. Chebykin E, Goldberg E, Kulikova N (2010) Elemental composition of suspended particles from the surface waters of Lake Baikal in the zone affected by the Selenga River. Russ Geol Geophy 51(10):1126–1132CrossRefGoogle Scholar
  13. Chebykin E, Sorokovikova L, Tomberg I, Rasskazov S, Khodzher T, Grachev M (2012) Current state of the Selenga River waters in the Russian territory concerning major components and trace elements. Chem Sustain Dev 20(5):561–580Google Scholar
  14. Dong TY, Nittrouer JA, Il’icheva E, Pavlov M, McElroy B, Czapiga MJ, Ma H, Parker G (2016) Controls on gravel termination in seven distributary channels of the Selenga River Delta, Baikal Rift basin, Russia. Geol Soc Am Bull. doi:10.1130/B31427.1 Google Scholar
  15. Doxaran D, Froidefond JM, Lavender S, Castaing P (2002) Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended sediment matter concentrations. Remote Sens Environ 81:149–161. doi:10.1016/S0034-4257(01)00341-8 CrossRefGoogle Scholar
  16. Garmaev EJ, Khristoforov AV (2010) Water resources of the rivers of the Lake Baikal Basin: basics of their use and protection. Geo, NovosibirskGoogle Scholar
  17. Gernez P, Lafon V, Lerouxel A, Curti C, Lubac B, Cerisier S, Barillé L (2015) Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) experiment in the Loire and Gironde estuaries. Remote Sens 7(8):9507–9528. doi:10.3390/rs70809507 CrossRefGoogle Scholar
  18. Heim B, Oberhaensli H, Fietz S, Kaufmann H (2005) Variation in Lake Baikal’s phytoplankton distribution and fluvial input assessed by SeaWiFS satellite data. Global Planet Change 46:9–27. doi:10.1016/j.gloplacha.2004.11.011 CrossRefGoogle Scholar
  19. Ilyicheva EA (2008) Dynamics of structure of a river network of the Selenga River and its delta. Geogr Nat Resour 4:58–63. doi:10.1016/j.gnr.2008.10.011 Google Scholar
  20. Inam E, Khantotong S, Kim KW, Tumendemberel B, Erdenetsetseg S, Puntsag T (2011) Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environ Geochem Health 33:57–69. doi:10.1007/s10653-010-9347-1 CrossRefGoogle Scholar
  21. Karthe D, Chalov S, Borchardt D (2015a) Water resources and their management in Central Asia in the early 21st century: status, challenges and future prospects. Environ Earth Sci 73(2):487–499. doi:10.1007/s12665-014-3789-1 CrossRefGoogle Scholar
  22. Karthe D, Heldt S, Houdret A, Borchardt D (2015b) IWRM in a country under rapid transition: lessons learnt from the Kharaa River Basin, Mongolia. Environ Earth Sci 73(2):681–695. doi:10.1007/s12665-014-3435-y CrossRefGoogle Scholar
  23. Karthe D, Hofmann J, Ibisch R, Heldt S, Westphal K, Menzel L, Avlyush S, Malsy M (2015c) Science-based IWRM implementation in a data-scarce central Asian region: experiences from a research and development project in the Kharaa River Basin, Mongolia. Water 7(7):3486–3514. doi:10.3390/w7073486 CrossRefGoogle Scholar
  24. Lisitzin AP (1995) The marginal filter of the ocean. Oceanology 34:671–682Google Scholar
  25. Liu JP, Xu KH, Li AC, Milliman JD, Velozzia DM, Xiao SB, Yange AC (2007) Flux and fate of Yangtze River sediment delivered to the East China, Sea. Geomorphology 85(3):208–224. doi:10.1016/j.geomorph.2006.03.023 CrossRefGoogle Scholar
  26. Logachev NA (2003) History and geodynamics of the Baikal rift. Russ Geol Geophys 44(5):391–406Google Scholar
  27. Lychagin MY, Tkachenko AN, Kasimov NS, Kroonenberg S (2015) Heavy metals in the water, plants, and bottom sediments of the Volga River mouth area. J Coast Res 31(4):859–868. doi:10.2112/jcoastres-d-12-00194.1 CrossRefGoogle Scholar
  28. Meybeck M, Vörösmarty C (2005) Fluvial filtering of land-to-ocean fluxes: from natural Holocene variations to Anthropocene. CR Geosci 337(1):107–123. doi:10.1016/j.crte.2004.09.016 CrossRefGoogle Scholar
  29. Nadmitov B, Hong S, Kang SI, Chu JM, Gomboev B, Janchivdorj L, Lee CH, Khim JS (2014) Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environ Sci Pollut Res 22(4):2856–2867. doi:10.1007/s11356-014-3564-6 CrossRefGoogle Scholar
  30. Nittrouer JA, Mohrig D, Allison MA (2011) Punctuated sand transport in the lowermost Mississippi River. J Geophys Res 116:1–24. doi:10.1029/2011JF002026 CrossRefGoogle Scholar
  31. Perel’man AI (1986) Geochemical barriers: theory and practical applications. Appl Geochem 1(6):669–680. doi:10.1016/0883-2927(86)90088-0 CrossRefGoogle Scholar
  32. Pfeiffer M, Batbayar G, Hofmann J, Siegfried K, Karthe D, Hahn-Tomer S (2015) Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environ Earth Sci 73(2):649–662. doi:10.1007/s12665-013-3029-0) CrossRefGoogle Scholar
  33. Pietroń J, Jarsjö J, Romanchenko A, Chalov SR (2015) Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops. J Hydrol 527:576–589. doi:10.1016/j.jhydrol.2015.05.009 CrossRefGoogle Scholar
  34. Postma G (1995) Sea-level-related architectural trends in coarse-grained delta complexes. Sediment Geol 98(1):3–12. doi:10.1016/0037-0738(95)00024-3 CrossRefGoogle Scholar
  35. Potemkina TG (1995) Distribution of Water and Sediment Runoff in the Selenga Delta Branches. Geografiya i prirod. resursy 1:75–78Google Scholar
  36. Potemkina TG (2011) Sediment runoff formation trends of major tributaries of Lake Baikal in the 20th century and at the beginning of the 21st century. Russ Meteorol Hydrol 36(12):819–825. doi:10.3103/S1068373911120077 CrossRefGoogle Scholar
  37. Potemkina TG, Fialkov VA (1993) The balance of suspended load in Selenga Delta and its distribution in Lake Baikal. Water Resour 20:689–692Google Scholar
  38. Priess J, Schweitzer C, Wimmer F, Batkhishig O, Mimler M (2011) The consequences of land-use change and water demands in Central Mongolia. Land Use Policy 28(1):4–10. doi:10.1016/j.landusepol.2010.03.002 CrossRefGoogle Scholar
  39. Quin A, Jaramillo F, Destouni G (2015) Dissecting the ecosystem service of large-scale pollutant retention: the role of wetlands and other landscape features. Ambio 44(Suppl. 1):127–137. doi:10.1007/s13280-014-0594-8 CrossRefGoogle Scholar
  40. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Treatise on geochemistry. The Crust. Elsevier Science 3:1–64. doi: 10.1016/B0-08-043751-6/03016-4
  41. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environ Res 52:51–79. doi:10.1016/S0141-1136(00)00260-9 CrossRefGoogle Scholar
  42. Shaban M, Urban B, El Saadi A, Faisal M (2010) Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques. J Environ Manage 91(8):1785–1793. doi:10.1016/j.jenvman.2010.03.020 CrossRefGoogle Scholar
  43. Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40:831–845. doi:10.1016/0016-7037(76)90035-1 CrossRefGoogle Scholar
  44. Sorokovikova LM, Popovskaya GI, Tomberg IV, Sinyukovich VN, Kravchenko OS, Marinaite II, Bashenkhaeva NV, Khodzher TV (2013) The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russ Meteorol Hydrol 38(2):126–133. doi:10.3103/S1068373913020106 CrossRefGoogle Scholar
  45. Stubblefield A, Chandra S, Eagan S, Tuvshinjargal D, Davaadorzh G, Gilroy D, Sampson J, Thorne J, Allen B, Hogan Z (2005) Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integr Environ Assess Manag 1:365–373CrossRefGoogle Scholar
  46. Syvitski JP, Kettner AJ, Correggiari A, Nelson BW (2005) Distributary channels and their impact on sediment dispersal. Mar Geol 222:75–94. doi:10.1016/j.margeo.2005.06.030 CrossRefGoogle Scholar
  47. The Baikal Basin Information Centre (2015) State of the environment report, The Lake Baikal Basin. (Web. pdf) Accessed 25 Aug 2015Google Scholar
  48. Thorslund J, Jarsjö J, Belozerova E, Chalov S (2012) Assessment of the gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monit 14:2780–2792. doi:10.1039/c2em30643c CrossRefGoogle Scholar
  49. Thorslund J, Jarsjö J, Wällstedt T, Mörth CM, Lychagin MY, Chalov SR (2016) Speciation and hydrological transport of metals in a non-acidic river system: field data and model predictions. Reg Environ Change. doi:10.1007/s10113-016-0982-7
  50. Törnqvist R, Jarsjö J, Pietron J, Bring A, Rogberg P, Asokan SM, Destouni G (2014) Evolution of the hydro-climate system in the Lake Baikal basin. J Hydrol 519:1953–1962. doi:10.1016/j.jhydrol.2014.09.074 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sergey Chalov
    • 1
  • Josefin Thorslund
    • 2
  • Nikolay Kasimov
    • 1
  • Denis Aybullatov
    • 1
  • Elena Ilyicheva
    • 3
  • Daniel Karthe
    • 4
  • Alexey Kositsky
    • 1
  • Mikhail Lychagin
    • 1
  • Jeff Nittrouer
    • 7
  • Maxim Pavlov
    • 3
  • Jan Pietron
    • 2
  • Galina Shinkareva
    • 1
  • Mikhail Tarasov
    • 1
  • Endon Garmaev
    • 5
  • Yosef Akhtman
    • 6
  • Jerker Jarsjö
    • 2
  1. 1.Faculty of GeographyM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Institute of Geography SB RASIrkutskRussia
  4. 4.Helmholtz Centre for Environmental Research (UFZ)MagdeburgGermany
  5. 5.Baikal Institute of Nature Management SB RASUlan-UdeRussia
  6. 6.Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
  7. 7.Department of Earth ScienceRice University MS 126HoustonUSA

Personalised recommendations