Abstract
Livestock can contribute to climate change mitigation by reducing their greenhouse gas emissions and by increasing soil carbon sequestration. Packages of mitigation techniques can bring large environmental benefits as illustrated in six case studies modeled in the Global Livestock Environmental Assessment Model developed by FAO. With feasible technical interventions in livestock production systems, the mitigation potential of each of the selected species, systems and regions ranges from 14 to 41 %. While comparably high mitigation potentials were estimated for ruminant and pig production systems in Asia, Latin America and Africa, large emission reductions can also be attained in dairy systems with already high levels of productivity, in OECD countries. Mitigation interventions can lead to a concomitant reduction in emissions and increase in production, contributing to food security. This is particularly the case for improved feeding practices and better health and herd management practices. Livestock systems also have a significant potential for sequestrating carbon in pasturelands and rangelands through improved management, as illustrated in two of the six case studies in this paper.
This is a preview of subscription content, access via your institution.

References
Alcock DJ, Hegarty RS (2011) Potential effects of animal management and genetic improvement on enteric methane emissions, emissions intensity and productivity of sheep enterprises at Cowra, Australia. Anim Feed Sci Technol 166:749–760. doi:10.1016/j.anifeedsci.2011.04.053
Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper, 3
Beach RH, DeAngelo BJ, Rose S, Li C, Salas W, DelGrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agric Econ 38(2):109–115. doi:10.1111/j.1574-0862.2008.00286.x
Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48:21–27. doi:10.1071/EA07199
Bertelsen BS, Faulkner DB, Buskirk DD, Castree JW (1993) Beef cattle performance and forage characteristics of continuous, 6-paddock, and 11-paddock grazing systems. J Anim Sci 71(6):1381–1389
Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335. doi:10.4141/A03-109
Borchersen S, Peacock M (2009) Danish A.I. field data with sexed semen. Theriogenology 71(1):59–63. doi:10.1016/j.theriogenology.2008.09.026
Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28(1):315–358. doi:10.1146/annurev.energy.28.040202.122858
Chilliard Y, Ferlay A (2004) Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod Nutr Dev 44:467–492. doi:10.1051/rnd:2004052
de Garcia JS, Silvestri S, Granados A, Iglesias A (2014) Behavioural barriers in response to climate change in agricultural communities: an example from Kenya. Reg Environ Chang 15(5):851–865. doi:10.1007/s10113-014-0676-y
DeJarnette JM, Nebel RL, Marshall CE (2009) Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology 71:49–58. doi:10.1016/j.theriogenology.2008.09.042
Doreau M, Bamière L, Pellerin S, Lherm M, Benoit M (2014) Mitigation of enteric methane for French cattle: potential extent and cost of selected actions. Anim Prod Sci 54(9):1417–1422. doi:10.1071/AN14207
FAO (2011) World livestock 2011—livestock in food security. FAO, Rome
FAOSTAT (2015) FAO Statistical database. Accessed 2015
Foley JA (2011) Can we feed the world & sustain the planet? Sci Am 305(5):60–65. doi:10.1038/scientificamerican1111-60
Dairy UK Supply Chain Forum (2008) The milk roadmap. http://dairy.ahdb.org.uk/non_umbraco/download.aspx?media=8066
Gerber P, Vellinga T, Opio C, Steinfeld H (2011) Productivity gains and greenhouse gas intensity in dairy systems. Livest Sci 139:100–108. doi:10.1016/j.livsci.2011.03.012
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO, Rome
Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320. doi:10.1016/j.anifeedsci.2011.04.021
Henderson B, Gerber P, Hilinski T, Falcucci A, Ojima D, Salvatore M, Conant R (2015a) Greenhouse gas mitigation potential of the world’s grazing lands: modelling soil carbon and nitrogen fluxes of mitigation practices. Agric Ecosyst Environ 207:91–100. doi:10.1016/j.agee.2015.03.029
Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P (2015b) Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-015-9673-9
Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, Rufino M (2013a) The role of livestock in developing countries. Animal 7(s1):3–18. doi:10.1017/S1751731112001954
Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blümmel M, Weiss F, Grace D, Obersteiner M (2013b) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci U S A 110(52):20888–20893. doi:10.1073/pnas.1308149110
Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS (eds) FAO Animal Production and Health Paper No. 177. FAO, Rome
IEA (2008) Energy technology perspectives 2008: scenarios and strategies to 2050. International Energy Agency, Paris, p 307
Innovation Center for U.S. Dairy (2008) U.S. dairy sustainability initiative: a roadmap to reduce greenhouse gas emissions and increase business value. https://center.sustainability.duke.edu/sites/default/files/documents/innovationusdairy.pdf
IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 688
Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Anim Sci 73(9):2774–2790. doi:/1995.7392774x
Kamuanga MJ, Somda J, Sanon Y, Kagoné H (2008) Livestock and regional market in the Sahel and West Africa. Potentials and challenges. SWAC-OECD/ECOWAS, Sahel and West Africa Club/OECD, Issy-les-Moulineaux
Keady TWJ, Marley CM, Scollan ND (2012) Grass and alternative forage silages for beef cattle and sheep: effects on animal performance. In: Proceedings of the XVI international silage conference, Hämeenlinna
Kimura S (2012) Analysis on energy saving potential in East Asia Region, ERIA Research Project Report 2011, No. 18
MacLeod M, Gerber P, Mottet A, Tempio G, Falcucci A, Opio C, Vellinga T, Henderson B, Steinfeld HF (2013) Greenhouse gas emissions from pig and chicken supply chains—a global life cycle assessment. FAO, Rome
Manninen M, Honkavaara M, Jauhiainen L, Nykänen A, Heikkilä AM (2011) Effects of grass-red clover silage digestibility and concentrate protein concentration on performance, carcass value, eating quality and economy of finishing Hereford bulls reared in cold conditions. Agric Food Sci 20:151–168
Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci 86:2642–2650. doi:10.2527/jas.2007-0774
Masse DI, Croteau F, Patni NK, Masse L (2003a) Methane emissions from dairy cow and swine manure slurries stored at 10 °C and 15 °C. Can Biosyst Eng 45:6.1–6.6
Masse DI, Masse L, Croteau F (2003b) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89:57–62. doi:10.1016/S0960-8524(03)00009-9
Mekoya A, Oosting SJ, Fernandez-Rivera S, Van der Zijpp AJ (2008) Farmers’ perceptions about exotic multipurpose fodder trees and constraints to their adoption. Agrofor Syst 73:141–153. doi:10.1007/s10457-007-9102-5
Mohamed Saleem MA (1998) Nutrient balance patterns in African livestock systems. Agric Ecosyst Environ 71:241–254. doi:10.1016/S0167-8809(98)00144-3
Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170. doi:10.1016/j.agee.2005.08.015
Moran D, MacLeod M, Wall E, Eory V, Pajot G, Matthews R, McVittie A, Barnes A, Rees B, Moxey A, Williams A, Smith P (2008) UK marginal abatement cost curves for the agriculture and land use, land-use change and forestry sectors out to 2022, with qualitative analysis of options to 2050. Final report to the Committee on Climate Change. Scottish Agricultural College Commercial, Edinburgh
Moran D, MacLeod M, Wall E, Eory V, McVittie A, Barnes A, Rees R, Topp CFE, Moxey A (2011) Marginal abatement cost curves for UK agricultural greenhouse gas emissions. J Agric Econ 62(1):93–118. doi:10.1111/j.1477-9552.2010.00268.x
NDDB (2013) Animal breeding. National Dairy Development Board. http://www.nddb.org/sites/default/files/pdfs/nddb-annual-report-2013-2014.pdf
Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, Robertson R, Tokgoz S, Zhu T, Sulser TB, Ringler C, Msangi S, You L (2010) Food security, farming, and climate change to 2050: Scenarios, results, policy options (vol 172). International Food Policy Research Institute, Washington, D.C
Nguyen H (2012) Life cycle assessment of cattle production: exploring practices and system changes to reduce environmental impact. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand
Norman HD, Hutchison JL, Miller RH (2010) Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United States. J Dairy Sci 93:3880–3890. doi:10.3168/jds.2009-2781
Oosting SJ, Mekoya A, Fernandez-Rivera S, van der Zijpp AJ (2011) Sesbania sesban as a fodder tree in Ethiopian livestock farming systems: feeding practices and farmers’ perceptions of feeding effects on sheep performance. Livest Sci 139:135–142. doi:10.1016/j.livsci.2011.03.009
Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. FAO, Rome
Rabiee AR, Breinhild K, Scott W, Golder HM, Block E, Lean IJ (2012) Effect of fat additions to diets of dairy cattle on milk production and components: a meta-analysis and meta-regression. J Dairy Sci 95:3225–3247. doi:10.3168/jds.2011-4895
Rasmussen J, Harrison A (2011) The benefits of supplementary fat in feed rations for ruminants with particular focus on reducing levels of methane production. ISRN Vet Sci. doi:10.5402/2011/613172
Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Domest Anim 43:338–346. doi:10.1111/j.1439-0531.2008.01182.x
Roos KF, Martin JH, Moser MA (2004) AgSTAR handbook: a manual for developing biogas systems at commercial farms in the United States; Second Edition. US Environmental Protection Agency. EPA-430-B-97-015
Safley LM, Westerman PW (1994) Low-temperature digestion of dairy and swine manure. Bioresour Technol 47:165–171. doi:10.1016/0960-8524(94)90116-3
Sánchez B, Álvaro-Fuentes J, Cunningham R, Iglesias A (2014) Towards mitigation of greenhouse gases by small changes in farming practices: understanding local barriers in Spain. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9562-7
Scollan ND, Sargeant A, McMallan AB, Dhanoa MS (2001) Protein supplementation of grass silages of differing digestibility for growing steers. J Agric Sci 136:89–98
Seré C, Steinfeld H (1996) World livestock production systems-Current status. Issues and Trends, FAO, Rome
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 497–540
Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20(2):219–230. doi:10.1111/j.1475-2743.2004.tb00362.x
Steen RWJ (1987) Factor affecting the utilization of grass silage for beef production. In: Frame JF (ed) Efficient beef production from grass, Occasional symposium of the British grassland society, vol 22. Nantwich, UK, pp 129–139
Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan CD (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome
Stocker TF (2013) The closing door of climate targets. Science 339(6117):280–282. doi:10.1126/science.1232468
Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci U S A 107(46):19667–19672. doi:10.1073/pnas.0912890107
US EPA (2006) Global mitigation of non-CO2 greenhouse gases. EPA 430-R-06-005. United States Environmental Protection Agency, Washington DC
US EPA (2013) Global mitigation of non-CO2 greenhouse gases: 2010–2030. EPA 430-R-13-011. Washington DC
Walli TK (2011) Biological treatment of straws. In: Successes and failures with animal nutrition practices and technologies in developing countries. In: Proceedings of the FAO electronic conference, 1–30 September 2010, Rome, pp 57–61
West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345(6194):325–328. doi:10.1126/science.1246067
Whittle L, Hug B, White S, Heyhoe E, Harle K, Mamun E, Ahammad H (2013) Costs and potential of agricultural emissions abatement in Australia. Australian Bureau of Agricultural and Resource Economics and Sciences. ABARES Technical Report 13.2. Canberra, Australia
Wilson JR, Minson DJ (1980) Prospects for improving the digestibility and intake of tropical grasses. Trop Grassl 14(3):253–259
Acknowledgments
This research was supported by the AnimalChange Project (FP7/2007-2013, Grant Agreement No. 266018), the Mitigation of Climate Change in Agriculture project (MICCA) and the CGIAR research program on Climate Change Agriculture and Food Security (CCAFS) and benefited from valuable comments from Henning Steinfeld, Tim Robinson, Jeroen Dijkman, Caroline Chaumont, Harinder Makkar and two anonymous reviewers.
Author information
Affiliations
Corresponding author
Additional information
Editor: Wolfgang Cramer.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mottet, A., Henderson, B., Opio, C. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg Environ Change 17, 129–141 (2017). https://doi.org/10.1007/s10113-016-0986-3
Received:
Accepted:
Published:
Issue Date:
Keywords
- Climate change
- Mitigation
- Livestock systems
- Productivity
- Packages of options