Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies

Abstract

Livestock can contribute to climate change mitigation by reducing their greenhouse gas emissions and by increasing soil carbon sequestration. Packages of mitigation techniques can bring large environmental benefits as illustrated in six case studies modeled in the Global Livestock Environmental Assessment Model developed by FAO. With feasible technical interventions in livestock production systems, the mitigation potential of each of the selected species, systems and regions ranges from 14 to 41 %. While comparably high mitigation potentials were estimated for ruminant and pig production systems in Asia, Latin America and Africa, large emission reductions can also be attained in dairy systems with already high levels of productivity, in OECD countries. Mitigation interventions can lead to a concomitant reduction in emissions and increase in production, contributing to food security. This is particularly the case for improved feeding practices and better health and herd management practices. Livestock systems also have a significant potential for sequestrating carbon in pasturelands and rangelands through improved management, as illustrated in two of the six case studies in this paper.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alcock DJ, Hegarty RS (2011) Potential effects of animal management and genetic improvement on enteric methane emissions, emissions intensity and productivity of sheep enterprises at Cowra, Australia. Anim Feed Sci Technol 166:749–760. doi:10.1016/j.anifeedsci.2011.04.053

    Article  Google Scholar 

  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper, 3

  3. Beach RH, DeAngelo BJ, Rose S, Li C, Salas W, DelGrosso SJ (2008) Mitigation potential and costs for global agricultural greenhouse gas emissions. Agric Econ 38(2):109–115. doi:10.1111/j.1574-0862.2008.00286.x

    Article  Google Scholar 

  4. Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48:21–27. doi:10.1071/EA07199

    CAS  Article  Google Scholar 

  5. Bertelsen BS, Faulkner DB, Buskirk DD, Castree JW (1993) Beef cattle performance and forage characteristics of continuous, 6-paddock, and 11-paddock grazing systems. J Anim Sci 71(6):1381–1389

    CAS  Google Scholar 

  6. Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335. doi:10.4141/A03-109

    Article  Google Scholar 

  7. Borchersen S, Peacock M (2009) Danish A.I. field data with sexed semen. Theriogenology 71(1):59–63. doi:10.1016/j.theriogenology.2008.09.026

    CAS  Article  Google Scholar 

  8. Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28(1):315–358. doi:10.1146/annurev.energy.28.040202.122858

    Article  Google Scholar 

  9. Chilliard Y, Ferlay A (2004) Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod Nutr Dev 44:467–492. doi:10.1051/rnd:2004052

    CAS  Article  Google Scholar 

  10. de Garcia JS, Silvestri S, Granados A, Iglesias A (2014) Behavioural barriers in response to climate change in agricultural communities: an example from Kenya. Reg Environ Chang 15(5):851–865. doi:10.1007/s10113-014-0676-y

    Article  Google Scholar 

  11. DeJarnette JM, Nebel RL, Marshall CE (2009) Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology 71:49–58. doi:10.1016/j.theriogenology.2008.09.042

    CAS  Article  Google Scholar 

  12. Doreau M, Bamière L, Pellerin S, Lherm M, Benoit M (2014) Mitigation of enteric methane for French cattle: potential extent and cost of selected actions. Anim Prod Sci 54(9):1417–1422. doi:10.1071/AN14207

    Google Scholar 

  13. FAO (2011) World livestock 2011—livestock in food security. FAO, Rome

    Google Scholar 

  14. FAOSTAT (2015) FAO Statistical database. Accessed 2015

  15. Foley JA (2011) Can we feed the world & sustain the planet? Sci Am 305(5):60–65. doi:10.1038/scientificamerican1111-60

    Article  Google Scholar 

  16. Dairy UK Supply Chain Forum (2008) The milk roadmap. http://dairy.ahdb.org.uk/non_umbraco/download.aspx?media=8066

  17. Gerber P, Vellinga T, Opio C, Steinfeld H (2011) Productivity gains and greenhouse gas intensity in dairy systems. Livest Sci 139:100–108. doi:10.1016/j.livsci.2011.03.012

    Article  Google Scholar 

  18. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO, Rome

    Google Scholar 

  19. Grainger C, Beauchemin KA (2011) Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol 166–167:308–320. doi:10.1016/j.anifeedsci.2011.04.021

    Article  Google Scholar 

  20. Henderson B, Gerber P, Hilinski T, Falcucci A, Ojima D, Salvatore M, Conant R (2015a) Greenhouse gas mitigation potential of the world’s grazing lands: modelling soil carbon and nitrogen fluxes of mitigation practices. Agric Ecosyst Environ 207:91–100. doi:10.1016/j.agee.2015.03.029

    CAS  Article  Google Scholar 

  21. Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P (2015b) Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-015-9673-9

    Google Scholar 

  22. Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, Rufino M (2013a) The role of livestock in developing countries. Animal 7(s1):3–18. doi:10.1017/S1751731112001954

    Article  Google Scholar 

  23. Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blümmel M, Weiss F, Grace D, Obersteiner M (2013b) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci U S A 110(52):20888–20893. doi:10.1073/pnas.1308149110

    CAS  Article  Google Scholar 

  24. Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS (eds) FAO Animal Production and Health Paper No. 177. FAO, Rome

    Google Scholar 

  25. IEA (2008) Energy technology perspectives 2008: scenarios and strategies to 2050. International Energy Agency, Paris, p 307

    Google Scholar 

  26. Innovation Center for U.S. Dairy (2008) U.S. dairy sustainability initiative: a roadmap to reduce greenhouse gas emissions and increase business value. https://center.sustainability.duke.edu/sites/default/files/documents/innovationusdairy.pdf

  27. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 688

  28. Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Anim Sci 73(9):2774–2790. doi:/1995.7392774x

  29. Kamuanga MJ, Somda J, Sanon Y, Kagoné H (2008) Livestock and regional market in the Sahel and West Africa. Potentials and challenges. SWAC-OECD/ECOWAS, Sahel and West Africa Club/OECD, Issy-les-Moulineaux

    Google Scholar 

  30. Keady TWJ, Marley CM, Scollan ND (2012) Grass and alternative forage silages for beef cattle and sheep: effects on animal performance. In: Proceedings of the XVI international silage conference, Hämeenlinna

  31. Kimura S (2012) Analysis on energy saving potential in East Asia Region, ERIA Research Project Report 2011, No. 18

  32. MacLeod M, Gerber P, Mottet A, Tempio G, Falcucci A, Opio C, Vellinga T, Henderson B, Steinfeld HF (2013) Greenhouse gas emissions from pig and chicken supply chains—a global life cycle assessment. FAO, Rome

    Google Scholar 

  33. Manninen M, Honkavaara M, Jauhiainen L, Nykänen A, Heikkilä AM (2011) Effects of grass-red clover silage digestibility and concentrate protein concentration on performance, carcass value, eating quality and economy of finishing Hereford bulls reared in cold conditions. Agric Food Sci 20:151–168

    CAS  Article  Google Scholar 

  34. Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci 86:2642–2650. doi:10.2527/jas.2007-0774

    CAS  Article  Google Scholar 

  35. Masse DI, Croteau F, Patni NK, Masse L (2003a) Methane emissions from dairy cow and swine manure slurries stored at 10 °C and 15 °C. Can Biosyst Eng 45:6.1–6.6

    Google Scholar 

  36. Masse DI, Masse L, Croteau F (2003b) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89:57–62. doi:10.1016/S0960-8524(03)00009-9

    CAS  Article  Google Scholar 

  37. Mekoya A, Oosting SJ, Fernandez-Rivera S, Van der Zijpp AJ (2008) Farmers’ perceptions about exotic multipurpose fodder trees and constraints to their adoption. Agrofor Syst 73:141–153. doi:10.1007/s10457-007-9102-5

    Article  Google Scholar 

  38. Mohamed Saleem MA (1998) Nutrient balance patterns in African livestock systems. Agric Ecosyst Environ 71:241–254. doi:10.1016/S0167-8809(98)00144-3

    Article  Google Scholar 

  39. Monteny GJ, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170. doi:10.1016/j.agee.2005.08.015

    CAS  Article  Google Scholar 

  40. Moran D, MacLeod M, Wall E, Eory V, Pajot G, Matthews R, McVittie A, Barnes A, Rees B, Moxey A, Williams A, Smith P (2008) UK marginal abatement cost curves for the agriculture and land use, land-use change and forestry sectors out to 2022, with qualitative analysis of options to 2050. Final report to the Committee on Climate Change. Scottish Agricultural College Commercial, Edinburgh

  41. Moran D, MacLeod M, Wall E, Eory V, McVittie A, Barnes A, Rees R, Topp CFE, Moxey A (2011) Marginal abatement cost curves for UK agricultural greenhouse gas emissions. J Agric Econ 62(1):93–118. doi:10.1111/j.1477-9552.2010.00268.x

    Article  Google Scholar 

  42. NDDB (2013) Animal breeding. National Dairy Development Board. http://www.nddb.org/sites/default/files/pdfs/nddb-annual-report-2013-2014.pdf

  43. Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, Robertson R, Tokgoz S, Zhu T, Sulser TB, Ringler C, Msangi S, You L (2010) Food security, farming, and climate change to 2050: Scenarios, results, policy options (vol 172). International Food Policy Research Institute, Washington, D.C

    Google Scholar 

  44. Nguyen H (2012) Life cycle assessment of cattle production: exploring practices and system changes to reduce environmental impact. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand

  45. Norman HD, Hutchison JL, Miller RH (2010) Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United States. J Dairy Sci 93:3880–3890. doi:10.3168/jds.2009-2781

    CAS  Article  Google Scholar 

  46. Oosting SJ, Mekoya A, Fernandez-Rivera S, van der Zijpp AJ (2011) Sesbania sesban as a fodder tree in Ethiopian livestock farming systems: feeding practices and farmers’ perceptions of feeding effects on sheep performance. Livest Sci 139:135–142. doi:10.1016/j.livsci.2011.03.009

    Article  Google Scholar 

  47. Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains—a global life cycle assessment. FAO, Rome

    Google Scholar 

  48. Rabiee AR, Breinhild K, Scott W, Golder HM, Block E, Lean IJ (2012) Effect of fat additions to diets of dairy cattle on milk production and components: a meta-analysis and meta-regression. J Dairy Sci 95:3225–3247. doi:10.3168/jds.2011-4895

    CAS  Article  Google Scholar 

  49. Rasmussen J, Harrison A (2011) The benefits of supplementary fat in feed rations for ruminants with particular focus on reducing levels of methane production. ISRN Vet Sci. doi:10.5402/2011/613172

    Google Scholar 

  50. Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Domest Anim 43:338–346. doi:10.1111/j.1439-0531.2008.01182.x

    Article  Google Scholar 

  51. Roos KF, Martin JH, Moser MA (2004) AgSTAR handbook: a manual for developing biogas systems at commercial farms in the United States; Second Edition. US Environmental Protection Agency. EPA-430-B-97-015

  52. Safley LM, Westerman PW (1994) Low-temperature digestion of dairy and swine manure. Bioresour Technol 47:165–171. doi:10.1016/0960-8524(94)90116-3

    CAS  Article  Google Scholar 

  53. Sánchez B, Álvaro-Fuentes J, Cunningham R, Iglesias A (2014) Towards mitigation of greenhouse gases by small changes in farming practices: understanding local barriers in Spain. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9562-7

    Google Scholar 

  54. Scollan ND, Sargeant A, McMallan AB, Dhanoa MS (2001) Protein supplementation of grass silages of differing digestibility for growing steers. J Agric Sci 136:89–98

    CAS  Article  Google Scholar 

  55. Seré C, Steinfeld H (1996) World livestock production systems-Current status. Issues and Trends, FAO, Rome

    Google Scholar 

  56. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 497–540

    Google Scholar 

  57. Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20(2):219–230. doi:10.1111/j.1475-2743.2004.tb00362.x

    Article  Google Scholar 

  58. Steen RWJ (1987) Factor affecting the utilization of grass silage for beef production. In: Frame JF (ed) Efficient beef production from grass, Occasional symposium of the British grassland society, vol 22. Nantwich, UK, pp 129–139

  59. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, Haan CD (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  60. Stocker TF (2013) The closing door of climate targets. Science 339(6117):280–282. doi:10.1126/science.1232468

    CAS  Article  Google Scholar 

  61. Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci U S A 107(46):19667–19672. doi:10.1073/pnas.0912890107

    CAS  Article  Google Scholar 

  62. US EPA (2006) Global mitigation of non-CO2 greenhouse gases. EPA 430-R-06-005. United States Environmental Protection Agency, Washington DC

  63. US EPA (2013) Global mitigation of non-CO2 greenhouse gases: 2010–2030. EPA 430-R-13-011. Washington DC

  64. Walli TK (2011) Biological treatment of straws. In: Successes and failures with animal nutrition practices and technologies in developing countries. In: Proceedings of the FAO electronic conference, 1–30 September 2010, Rome, pp 57–61

  65. West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA, Carlson KM, Cassidy ES, Johnston M, MacDonald GK, Ray DK, Siebert S (2014) Leverage points for improving global food security and the environment. Science 345(6194):325–328. doi:10.1126/science.1246067

    CAS  Article  Google Scholar 

  66. Whittle L, Hug B, White S, Heyhoe E, Harle K, Mamun E, Ahammad H (2013) Costs and potential of agricultural emissions abatement in Australia. Australian Bureau of Agricultural and Resource Economics and Sciences. ABARES Technical Report 13.2. Canberra, Australia

  67. Wilson JR, Minson DJ (1980) Prospects for improving the digestibility and intake of tropical grasses. Trop Grassl 14(3):253–259

    Google Scholar 

Download references

Acknowledgments

This research was supported by the AnimalChange Project (FP7/2007-2013, Grant Agreement No. 266018), the Mitigation of Climate Change in Agriculture project (MICCA) and the CGIAR research program on Climate Change Agriculture and Food Security (CCAFS) and benefited from valuable comments from Henning Steinfeld, Tim Robinson, Jeroen Dijkman, Caroline Chaumont, Harinder Makkar and two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne Mottet.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mottet, A., Henderson, B., Opio, C. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg Environ Change 17, 129–141 (2017). https://doi.org/10.1007/s10113-016-0986-3

Download citation

Keywords

  • Climate change
  • Mitigation
  • Livestock systems
  • Productivity
  • Packages of options