Skip to main content
Log in

Insect biodiversity: underutilized bioresource for sustainable applications in life sciences

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Due to the growing world population and changing eating habits, there is an increasing demand in sustainable alternative protein sources, whereas the available land for the production of plant and animal protein decreases owing to desertification and urbanization. Furthermore, the rapidly decreasing resources of fossil fuels necessitate more sustainable production cycles combined with well-conceived land use. This includes the establishment of novel utilization pathways for hitherto not or insufficiently used biomass. In this context, insects offer prospective alternatives, since they represent highly efficient and, due to evolutionary processes, highly optimized bioreactors that have the ability to effectively and autonomously convert biomass into biochemical compounds such as proteins, fat, and chitin by combined mechanical, chemical, and microbiological degradation. Furthermore, insects are a vastly underutilized bioresource and need to be exploited for the bioconversion and valorization also of hitherto not usable organic residues to food, feed, chemicals, enzymes, and other bioactive compounds. Mentionable is here also the production of attractants, repellants, defensive, and other chemicals such as antimicrobial peptides that open up new opportunities for therapeutical and biotechnological applications, for example regarding plant pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand H, Ganguly A, Haldar P (2008) Potential value of Acridids as high protein supplement for poultry feed. Int J Poult Sci 7:722–725

    Article  CAS  Google Scholar 

  • Barroso FG, de Haro C, Sanchez-Muros M-J, Venegas E, Martinez-Sanchez A, Perez-Banon C (2014) The potential of various insect species for use as food for fish. Aquaculture 422:193–201. doi:10.1016/j.aquaculture.2013.12.024

    Article  Google Scholar 

  • Bengyella L, Pranab R (2010) Engineered pathogenesis related and antimicrobial proteins weaponry against Phytopthora infestans in potato plant: a review. Biotechnol Mol Biol Rev 5:61–66

    Google Scholar 

  • Berlanga M, Paster BJ, Guerrero R (2009) The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host. Int Microbiol 12:227–236. doi:10.2436/20.1501.01.102

    CAS  Google Scholar 

  • Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374. doi:10.1146/annurev.en.41.010196.002033

    Article  CAS  Google Scholar 

  • Bondari K, Sheppard DC (1987) Soldier fly Hermetia illucens L. larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia Oreochromis aureus (Steindacher). Aquac Fish Manag 18:209–220. doi:10.1111/j.1365-2109.1987.tb00141.x

    Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. doi:10.1038/nrmicro3182

    Article  CAS  Google Scholar 

  • Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99:12628–12632. doi:10.1073/pnas.192301899

    Article  CAS  Google Scholar 

  • Dharne M, Patole M, Shouche YS (2006) Microbiology of the insect gut: tales from mosquitoes and bees. J Biosci 31:293–295. doi:10.1007/bf02704100

    Article  Google Scholar 

  • Diener S, Zurbruegg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27:603–610. doi:10.1177/0734242x09103838

    Article  CAS  Google Scholar 

  • Diener S, Solano NMS, Gutierrez FR, Zurbruegg C, Tockner K (2011) Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valoriz 2:357–363. doi:10.1007/s12649-011-9079-1

    Article  CAS  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. doi:10.1146/annurev-ento-010814-020822

    Article  CAS  Google Scholar 

  • EFSA (2015) Risk profile related to production and consumption of insects as food and feed. EFSA J 13:4257. doi:10.2903/j.efsa.2015.4257

    Article  Google Scholar 

  • El Boushy AR (1991) House-fly pupae as poultry manure converters for animal feed: a review. Bioresour Technol 38:45–49. doi:10.1016/0960-8524(91)90220-e

    Article  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects: diversity in structure and function. Fems Microbiol Rev 37:699–735. doi:10.1111/1574-6976.12025

    Article  CAS  Google Scholar 

  • FAOstat (2014) http://faostat3.fao.org/home/E. Accessed 18 Dec 2014

  • Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28:23–38

    CAS  Google Scholar 

  • Feedipedia.org (2015) www.feedipedia.org. Accessed 4 Nov 2015

  • Frenzel M, Dettner K (1994) Quantification of cantharidin in canthariphilous ceratopogonidae (Diptera), anthomyiidae (Diptera) and cantharidin-producing oedemeridae (Coleoptera). J Chem Ecol 20:1795–1812. doi:10.1007/bf02066223

    Article  CAS  Google Scholar 

  • Gebhardt K, Schimana J, Muller J, Fiedler HP, Kallenborn HG, Holzenkampfer M, Krastel P, Zeeck A, Vater J, Hotzel A, Schmid DG, Rheinheimer J, Dettner K (2002) Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. Fems Microbiol Lett 217:199–205. doi:10.1016/s0378-1097(02)01065-0

    Article  CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MdM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. doi:10.1073/pnas.0805257105

    Article  CAS  Google Scholar 

  • Grimaldi DA, Engel MS (2005) The evolution of insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Hem S, Toure S, Sagbla C, Legendre M (2008) Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr J Biotechnol 7:1192–1198

    Google Scholar 

  • Heuze V, Tran G, Sauvant D, Noblet J, Renaudeau D, Bastianelli D, Lebas F (2015) Feedipedia: palm kernel meal. http://www.feedipedia.org/node/43. Accessed 4 Nov 2015

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Hull R, Katete R, Ntwasa M (2012) Therapeutic potential of antimicrobial peptides from insects. Biotechnol Mol Biol Rev 7:31–47

    CAS  Google Scholar 

  • Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (2009) Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30:609–614

    CAS  Google Scholar 

  • Ijaiya AT, Eko EO (2009) Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on growth, digestibility and economics of production of starter broiler chickens. Pak J Nutr 8:845–849

    Article  Google Scholar 

  • Jongema Y (2015) List of edible insects of the world (June 1, 2015). Laboratory of entomology, Wageningen University. http://www.ent.wur.nl/UK/Edible+insects/Worldwide+species+list/. Accessed 1 Oct 2015

  • Kellner RLL, Dettner K (1995) Allocation of pederin during lifetime of Paederus rove beetles (Coleoptera: Staphylinidae): evidence for polymorphism of hemolymph toxin. J Chem Ecol 21:1719–1733. doi:10.1007/bf02033672

    Article  CAS  Google Scholar 

  • Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Pere C, Cock M, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45. doi:10.1007/s10530-008-9318-y

    Article  Google Scholar 

  • Koenig H, Li L, Froehlich J (2013) The cellulolytic system of the termite gut. Appl Microbiol Biotechnol 97:7943–7962. doi:10.1007/s00253-013-5119-z

    Article  CAS  Google Scholar 

  • Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute: growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364:345–352. doi:10.1016/j.aquaculture.2012.08.041

    Article  Google Scholar 

  • Lalander CH, Fidjeland J, Diener S, Eriksson S, Vinneras B (2015) High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron Sustain Dev 35:261–271. doi:10.1007/s13593-014-0235-4

    Article  CAS  Google Scholar 

  • Larde G (1990) Recycling of coffee pulp by Hermetia illucens (Diptera, Stratiomyidae) larvae. Biol Wastes 33:307–310. doi:10.1016/0269-7483(90)90134-e

    Article  Google Scholar 

  • Lee CG, Da Silva CA, Lee J-Y, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689. doi:10.1016/j.coi.2008.10.002

    Article  CAS  Google Scholar 

  • Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011a) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548. doi:10.1016/j.fuel.2010.11.016

    Article  CAS  Google Scholar 

  • Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK, Yu Z (2011b) Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag 31:1316–1320. doi:10.1016/j.wasman.2011.01.005

    Article  CAS  Google Scholar 

  • Makkar HPS, Tran G, Henze V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. doi:10.1016/j.anifeedsci.2014.07.008

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312. doi:10.3390/md8020292

    Article  CAS  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. doi:10.1038/35016500

    Article  CAS  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110. doi:10.1073/pnas.0905235106

    Article  CAS  Google Scholar 

  • Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46. doi:10.1016/j.foodchem.2014.10.114

    Article  CAS  Google Scholar 

  • Ogunji JO, Kloas W, Wirth M, Neumann N, Pietsch C (2008) Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J Anim Physiol Anim Nutr 92:511–518. doi:10.1111/j.1439-0396.2007.00745.x

    Article  CAS  Google Scholar 

  • Olaniyi CO, Salau BR (2013) Utilization of maggot meal in the nutrition of African cat fish. Afr J Agric Res 8:4604–4607

    Article  Google Scholar 

  • Oliveira-Goumas B (2004) European parliament directorate general for research working paper: the fish meal and fish oil industry its role in the common fisheries policy (FISH 113 EN) vol FISH 113 EN. European Parliament Luxemburg

  • Oonincx DGAB, de Boer IJM (2012) Environmental impact of the production of mealworms as a protein source for humans: a life cycle assessment. PLoS One. doi:10.1371/journal.pone.0051145

    Google Scholar 

  • Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. doi:10.1371/journal.pone.0014445

    Google Scholar 

  • Payne CLR (2015) Wild harvesting declines as pesticides and imports rise: the collection and consumption of insects in contemporary rural Japan. J Insects Food Feed 1:57–65. doi:10.3920/JIFF2014.0004

    Article  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007. doi:10.1073/pnas.222481399

    Article  CAS  Google Scholar 

  • Poeppel A-K, Koch A, Kogel K-H, Vogel H, Kollewe C, Wiesner J, Vilcinskas A (2014) Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem 395:649–656. doi:10.1515/hsz-2013-0263

    CAS  Google Scholar 

  • Popa R, Green TR (2012) Using black soldier fly larvae for processing organic leachates. J Econ Entomol 105:374–378. doi:10.1603/ec11192

    Article  Google Scholar 

  • Post K, Riesner D, Walldorf V, Mehlhorn H (1999) Fly larvae and pupae as vectors for scrapie. Lancet 354:1969–1970. doi:10.1016/s0140-6736(99)00469-9

    Article  CAS  Google Scholar 

  • Puerto Galvis CE, Vargas Mendez LY, Kouznetsov VV (2013) Cantharidin-based small molecules as potential therapeutic agents. Chem Biol Drug Des 82:477–499. doi:10.1111/cbdd.12180

    Article  CAS  Google Scholar 

  • Ramos-Elorduy J (2006) Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. J Ethnobiol Ethnomed 2:51. doi:10.1186/1746-4269-2-51

    Article  Google Scholar 

  • Ramos-Elorduy J, Moreno JM, Prado E, Perez M, Otero J, Larron De Guevara O (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compos Anal 10:142–157. doi:10.1006/jfca.1997.0530

    Article  CAS  Google Scholar 

  • Ramos-Elorduy J, Pino-M JM, Correa SC (1998) Insectos comestibles del Estado de México y determinación de su valor nutritivo. Anales Inst Biol Univ Nac Autón México Ser Zool 69(1):65–104

    Google Scholar 

  • Ramos-Elorduy J, Gonzalez EA, Hernandez AR, Pino JM (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95:214–220. doi:10.1603/0022-0493-95.1.214

    Article  Google Scholar 

  • Rumpold BA, Schlüter OK (2013a) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823. doi:10.1002/mnfr.201200735

    Article  CAS  Google Scholar 

  • Rumpold BA, Schlüter OK (2013b) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17:1–11. doi:10.1016/j.ifset.2012.11.005

    Article  CAS  Google Scholar 

  • Rumpold BA, Schlüter OK (2014) Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain 4:129–139. doi:10.3362/2046-1887.2014.013

    Article  Google Scholar 

  • Schauer C, Thompson CL, Brune A (2012) The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78:2758–2767. doi:10.1128/aem.07788-11

    Article  CAS  Google Scholar 

  • Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc 42:34–45. doi:10.1111/j.1749-7345.2010.00441.x

    Article  Google Scholar 

  • Sheppard CD, Newton LG, Thompson SA, Savage S (1994) A value added manure management system using the black soldier fly. Bioresour Technol 50:275–279. doi:10.1016/0960-8524(94)90102-3

    Article  CAS  Google Scholar 

  • Stamer A, Wesselss S, Neidigk R, Hoerstgen-Schwark G (2014) Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredient’s class in aquaculture diets. Paper presented at the 4th ISOFAR scientific conference “Building Organci Bridges”, at the organic world conference, Istanbul, Turkey, 13–15 Oct

  • St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquac Soc 38:309–313. doi:10.1111/j.1749-7345.2007.00101.x

    Article  Google Scholar 

  • St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J World Aquac Soc 38:59–67. doi:10.1111/j.1749-7345.2006.00073.x

    Article  Google Scholar 

  • van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12:662–678. doi:10.1111/1541-4337.12032

    Article  Google Scholar 

  • van Huis A, van Itterbeeck J, Klunder HC, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security vol 171. FAO Forestry paper. FAO, Rome

  • Veldkamp T, van Duinkerken G, Van Huis A, Lakemond CMM, Ottevanger E, Bosch G, Van Boekel MAJS (2012) Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. Wageningen UR Livestock Research, Lelystad. https://www.wageningenur.nl/upload_mm/2/8/0/f26765b9-98b2-49a7-ae43-5251c5b694f6_234247%5B1%5D

    Google Scholar 

  • Vilcinskas A, Gross J (2005) Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J Pest Sci 78:187–191. doi:10.1007/s10340-005-0114-5

    Article  Google Scholar 

  • Wang D, Zhai SW, Zhang CX, Bai YY, An SH, Xu YN (2005) Evaluation on nutritional value of field crickets as a poultry feedstuff Asian-Australas. J Anim Sci 18:667–670

    Google Scholar 

  • Yang S, Liu Z (2014) Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production. Appl Energy 113:385–391. doi:10.1016/j.apenergy.2013.07.056

    Article  CAS  Google Scholar 

  • Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014a) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. doi:10.1021/es504038a

    Article  CAS  Google Scholar 

  • Yang S, Li Q, Gao Y, Zheng LY, Liu ZD (2014b) Biodiesel production from swine manure via housefly larvae (Musca domestica L.). Renew Energy 66:222–227. doi:10.1016/j.renene.2013.11.076

    Article  CAS  Google Scholar 

  • Žáková M, Borkovcová M (2013) Hermetia illucens application in management of selected types of organic waste. In: The 2nd electronic international interdisciplinary conference, vol 1, 2–6 Sept 2013. EDIS—Publishing Institution of the University of Zilina, pp 367–370. http://www.eiic.cz/archive/?vid=1&aid=2&kid=20201-33, http://www.eiic.cz/archive/?vid=1&aid=3&kid=20201-33&q=f1

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:10.1038/415389a

    Article  CAS  Google Scholar 

  • Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z (2013) Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl Energy 101:618–621. doi:10.1016/j.apenergy.2012.06.067

    Article  CAS  Google Scholar 

  • Zhou F, Tomberlin JK, Zheng L, Yu Z, Zhang J (2013) Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J Med Entomol 50:1224–1230. doi:10.1603/me13021

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the seed money program of the Leibniz Network on Biodiversity (LVB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schlüter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumpold, B.A., Klocke, M. & Schlüter, O. Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Reg Environ Change 17, 1445–1454 (2017). https://doi.org/10.1007/s10113-016-0967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10113-016-0967-6

Keywords