Abstract
Due to the growing world population and changing eating habits, there is an increasing demand in sustainable alternative protein sources, whereas the available land for the production of plant and animal protein decreases owing to desertification and urbanization. Furthermore, the rapidly decreasing resources of fossil fuels necessitate more sustainable production cycles combined with well-conceived land use. This includes the establishment of novel utilization pathways for hitherto not or insufficiently used biomass. In this context, insects offer prospective alternatives, since they represent highly efficient and, due to evolutionary processes, highly optimized bioreactors that have the ability to effectively and autonomously convert biomass into biochemical compounds such as proteins, fat, and chitin by combined mechanical, chemical, and microbiological degradation. Furthermore, insects are a vastly underutilized bioresource and need to be exploited for the bioconversion and valorization also of hitherto not usable organic residues to food, feed, chemicals, enzymes, and other bioactive compounds. Mentionable is here also the production of attractants, repellants, defensive, and other chemicals such as antimicrobial peptides that open up new opportunities for therapeutical and biotechnological applications, for example regarding plant pest management.
Similar content being viewed by others
References
Anand H, Ganguly A, Haldar P (2008) Potential value of Acridids as high protein supplement for poultry feed. Int J Poult Sci 7:722–725
Barroso FG, de Haro C, Sanchez-Muros M-J, Venegas E, Martinez-Sanchez A, Perez-Banon C (2014) The potential of various insect species for use as food for fish. Aquaculture 422:193–201. doi:10.1016/j.aquaculture.2013.12.024
Bengyella L, Pranab R (2010) Engineered pathogenesis related and antimicrobial proteins weaponry against Phytopthora infestans in potato plant: a review. Biotechnol Mol Biol Rev 5:61–66
Berlanga M, Paster BJ, Guerrero R (2009) The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host. Int Microbiol 12:227–236. doi:10.2436/20.1501.01.102
Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374. doi:10.1146/annurev.en.41.010196.002033
Bondari K, Sheppard DC (1987) Soldier fly Hermetia illucens L. larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia Oreochromis aureus (Steindacher). Aquac Fish Manag 18:209–220. doi:10.1111/j.1365-2109.1987.tb00141.x
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. doi:10.1038/nrmicro3182
Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, Platonov VG, Bulet P (2002) Antiviral and antitumor peptides from insects. Proc Natl Acad Sci USA 99:12628–12632. doi:10.1073/pnas.192301899
Dharne M, Patole M, Shouche YS (2006) Microbiology of the insect gut: tales from mosquitoes and bees. J Biosci 31:293–295. doi:10.1007/bf02704100
Diener S, Zurbruegg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27:603–610. doi:10.1177/0734242x09103838
Diener S, Solano NMS, Gutierrez FR, Zurbruegg C, Tockner K (2011) Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valoriz 2:357–363. doi:10.1007/s12649-011-9079-1
Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. doi:10.1146/annurev-ento-010814-020822
EFSA (2015) Risk profile related to production and consumption of insects as food and feed. EFSA J 13:4257. doi:10.2903/j.efsa.2015.4257
El Boushy AR (1991) House-fly pupae as poultry manure converters for animal feed: a review. Bioresour Technol 38:45–49. doi:10.1016/0960-8524(91)90220-e
Engel P, Moran NA (2013) The gut microbiota of insects: diversity in structure and function. Fems Microbiol Rev 37:699–735. doi:10.1111/1574-6976.12025
FAOstat (2014) http://faostat3.fao.org/home/E. Accessed 18 Dec 2014
Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environ Conserv 28:23–38
Feedipedia.org (2015) www.feedipedia.org. Accessed 4 Nov 2015
Frenzel M, Dettner K (1994) Quantification of cantharidin in canthariphilous ceratopogonidae (Diptera), anthomyiidae (Diptera) and cantharidin-producing oedemeridae (Coleoptera). J Chem Ecol 20:1795–1812. doi:10.1007/bf02066223
Gebhardt K, Schimana J, Muller J, Fiedler HP, Kallenborn HG, Holzenkampfer M, Krastel P, Zeeck A, Vater J, Hotzel A, Schmid DG, Rheinheimer J, Dettner K (2002) Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. Fems Microbiol Lett 217:199–205. doi:10.1016/s0378-1097(02)01065-0
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MdM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937. doi:10.1073/pnas.0805257105
Grimaldi DA, Engel MS (2005) The evolution of insects. Cambridge University Press, Cambridge
Hem S, Toure S, Sagbla C, Legendre M (2008) Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr J Biotechnol 7:1192–1198
Heuze V, Tran G, Sauvant D, Noblet J, Renaudeau D, Bastianelli D, Lebas F (2015) Feedipedia: palm kernel meal. http://www.feedipedia.org/node/43. Accessed 4 Nov 2015
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016
Hull R, Katete R, Ntwasa M (2012) Therapeutic potential of antimicrobial peptides from insects. Biotechnol Mol Biol Rev 7:31–47
Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (2009) Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 30:609–614
Ijaiya AT, Eko EO (2009) Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on growth, digestibility and economics of production of starter broiler chickens. Pak J Nutr 8:845–849
Jongema Y (2015) List of edible insects of the world (June 1, 2015). Laboratory of entomology, Wageningen University. http://www.ent.wur.nl/UK/Edible+insects/Worldwide+species+list/. Accessed 1 Oct 2015
Kellner RLL, Dettner K (1995) Allocation of pederin during lifetime of Paederus rove beetles (Coleoptera: Staphylinidae): evidence for polymorphism of hemolymph toxin. J Chem Ecol 21:1719–1733. doi:10.1007/bf02033672
Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Pere C, Cock M, Settele J, Augustin S, Lopez-Vaamonde C (2009) Ecological effects of invasive alien insects. Biol Invasions 11:21–45. doi:10.1007/s10530-008-9318-y
Koenig H, Li L, Froehlich J (2013) The cellulolytic system of the termite gut. Appl Microbiol Biotechnol 97:7943–7962. doi:10.1007/s00253-013-5119-z
Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute: growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364:345–352. doi:10.1016/j.aquaculture.2012.08.041
Lalander CH, Fidjeland J, Diener S, Eriksson S, Vinneras B (2015) High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron Sustain Dev 35:261–271. doi:10.1007/s13593-014-0235-4
Larde G (1990) Recycling of coffee pulp by Hermetia illucens (Diptera, Stratiomyidae) larvae. Biol Wastes 33:307–310. doi:10.1016/0269-7483(90)90134-e
Lee CG, Da Silva CA, Lee J-Y, Hartl D, Elias JA (2008) Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689. doi:10.1016/j.coi.2008.10.002
Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011a) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548. doi:10.1016/j.fuel.2010.11.016
Li Q, Zheng L, Qiu N, Cai H, Tomberlin JK, Yu Z (2011b) Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag 31:1316–1320. doi:10.1016/j.wasman.2011.01.005
Makkar HPS, Tran G, Henze V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. doi:10.1016/j.anifeedsci.2014.07.008
Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312. doi:10.3390/md8020292
Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024. doi:10.1038/35016500
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110. doi:10.1073/pnas.0905235106
Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46. doi:10.1016/j.foodchem.2014.10.114
Ogunji JO, Kloas W, Wirth M, Neumann N, Pietsch C (2008) Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J Anim Physiol Anim Nutr 92:511–518. doi:10.1111/j.1439-0396.2007.00745.x
Olaniyi CO, Salau BR (2013) Utilization of maggot meal in the nutrition of African cat fish. Afr J Agric Res 8:4604–4607
Oliveira-Goumas B (2004) European parliament directorate general for research working paper: the fish meal and fish oil industry its role in the common fisheries policy (FISH 113 EN) vol FISH 113 EN. European Parliament Luxemburg
Oonincx DGAB, de Boer IJM (2012) Environmental impact of the production of mealworms as a protein source for humans: a life cycle assessment. PLoS One. doi:10.1371/journal.pone.0051145
Oonincx DGAB, van Itterbeeck J, Heetkamp MJW, van den Brand H, van Loon JJA, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. doi:10.1371/journal.pone.0014445
Payne CLR (2015) Wild harvesting declines as pesticides and imports rise: the collection and consumption of insects in contemporary rural Japan. J Insects Food Feed 1:57–65. doi:10.3920/JIFF2014.0004
Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007. doi:10.1073/pnas.222481399
Poeppel A-K, Koch A, Kogel K-H, Vogel H, Kollewe C, Wiesner J, Vilcinskas A (2014) Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem 395:649–656. doi:10.1515/hsz-2013-0263
Popa R, Green TR (2012) Using black soldier fly larvae for processing organic leachates. J Econ Entomol 105:374–378. doi:10.1603/ec11192
Post K, Riesner D, Walldorf V, Mehlhorn H (1999) Fly larvae and pupae as vectors for scrapie. Lancet 354:1969–1970. doi:10.1016/s0140-6736(99)00469-9
Puerto Galvis CE, Vargas Mendez LY, Kouznetsov VV (2013) Cantharidin-based small molecules as potential therapeutic agents. Chem Biol Drug Des 82:477–499. doi:10.1111/cbdd.12180
Ramos-Elorduy J (2006) Threatened edible insects in Hidalgo, Mexico and some measures to preserve them. J Ethnobiol Ethnomed 2:51. doi:10.1186/1746-4269-2-51
Ramos-Elorduy J, Moreno JM, Prado E, Perez M, Otero J, Larron De Guevara O (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compos Anal 10:142–157. doi:10.1006/jfca.1997.0530
Ramos-Elorduy J, Pino-M JM, Correa SC (1998) Insectos comestibles del Estado de México y determinación de su valor nutritivo. Anales Inst Biol Univ Nac Autón México Ser Zool 69(1):65–104
Ramos-Elorduy J, Gonzalez EA, Hernandez AR, Pino JM (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95:214–220. doi:10.1603/0022-0493-95.1.214
Rumpold BA, Schlüter OK (2013a) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57:802–823. doi:10.1002/mnfr.201200735
Rumpold BA, Schlüter OK (2013b) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17:1–11. doi:10.1016/j.ifset.2012.11.005
Rumpold BA, Schlüter OK (2014) Nutrient composition of insects and their potential application in food and feed in Europe. Food Chain 4:129–139. doi:10.3362/2046-1887.2014.013
Schauer C, Thompson CL, Brune A (2012) The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78:2758–2767. doi:10.1128/aem.07788-11
Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc 42:34–45. doi:10.1111/j.1749-7345.2010.00441.x
Sheppard CD, Newton LG, Thompson SA, Savage S (1994) A value added manure management system using the black soldier fly. Bioresour Technol 50:275–279. doi:10.1016/0960-8524(94)90102-3
Stamer A, Wesselss S, Neidigk R, Hoerstgen-Schwark G (2014) Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredient’s class in aquaculture diets. Paper presented at the 4th ISOFAR scientific conference “Building Organci Bridges”, at the organic world conference, Istanbul, Turkey, 13–15 Oct
St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquac Soc 38:309–313. doi:10.1111/j.1749-7345.2007.00101.x
St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, McGuire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J World Aquac Soc 38:59–67. doi:10.1111/j.1749-7345.2006.00073.x
van der Spiegel M, Noordam MY, van der Fels-Klerx HJ (2013) Safety of novel protein sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12:662–678. doi:10.1111/1541-4337.12032
van Huis A, van Itterbeeck J, Klunder HC, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security vol 171. FAO Forestry paper. FAO, Rome
Veldkamp T, van Duinkerken G, Van Huis A, Lakemond CMM, Ottevanger E, Bosch G, Van Boekel MAJS (2012) Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. Wageningen UR Livestock Research, Lelystad. https://www.wageningenur.nl/upload_mm/2/8/0/f26765b9-98b2-49a7-ae43-5251c5b694f6_234247%5B1%5D
Vilcinskas A, Gross J (2005) Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J Pest Sci 78:187–191. doi:10.1007/s10340-005-0114-5
Wang D, Zhai SW, Zhang CX, Bai YY, An SH, Xu YN (2005) Evaluation on nutritional value of field crickets as a poultry feedstuff Asian-Australas. J Anim Sci 18:667–670
Yang S, Liu Z (2014) Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production. Appl Energy 113:385–391. doi:10.1016/j.apenergy.2013.07.056
Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014a) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784. doi:10.1021/es504038a
Yang S, Li Q, Gao Y, Zheng LY, Liu ZD (2014b) Biodiesel production from swine manure via housefly larvae (Musca domestica L.). Renew Energy 66:222–227. doi:10.1016/j.renene.2013.11.076
Žáková M, Borkovcová M (2013) Hermetia illucens application in management of selected types of organic waste. In: The 2nd electronic international interdisciplinary conference, vol 1, 2–6 Sept 2013. EDIS—Publishing Institution of the University of Zilina, pp 367–370. http://www.eiic.cz/archive/?vid=1&aid=2&kid=20201-33, http://www.eiic.cz/archive/?vid=1&aid=3&kid=20201-33&q=f1
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. doi:10.1038/415389a
Zheng L, Hou Y, Li W, Yang S, Li Q, Yu Z (2013) Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl Energy 101:618–621. doi:10.1016/j.apenergy.2012.06.067
Zhou F, Tomberlin JK, Zheng L, Yu Z, Zhang J (2013) Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J Med Entomol 50:1224–1230. doi:10.1603/me13021
Acknowledgments
This study was supported by the seed money program of the Leibniz Network on Biodiversity (LVB).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Rumpold, B.A., Klocke, M. & Schlüter, O. Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Reg Environ Change 17, 1445–1454 (2017). https://doi.org/10.1007/s10113-016-0967-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10113-016-0967-6

