Skip to main content

Advertisement

Log in

Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state Northwest US region for the interval from 1986 to 2010. Landsat data were used to characterize disturbances, and forest inventory data were used to parameterize the model. The overall disturbance rate on forest land across the region was 0.8 % year−1, with 49 % as harvests, 28 % as fire, and 23 % as pest/pathogen. Net ecosystem production (NEP) for the 2006–2010 interval on forestland was predominantly positive (a carbon sink) throughout the region, with maximum values in the Coast Range, intermediate values in the Cascade Mountains, and relatively low values in the Inland Rocky Mountain ecoregions. Localized negative NEPs were mostly associated with recent disturbances. There was large interannual variation in regional NEP, with notably low values across the region in 2003, which was also the warmest year in the interval. The recent (2006–2010) net ecosystem carbon balance (NECB) was positive for the region (14.4 TgC year−1). Despite a lower area-weighted mean NECB, public forestland contributed a larger proportion to the total NECB because of its larger area. Aggregated forest inventory data and inversion modeling are beginning to provide opportunities for evaluating model-simulated regional carbon stocks and fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abatzoglou JT, Rupp DE, Mote PW (2014) Seasonal climate variability and change in the Pacific Northwest of the United States. J Clim 27:2125–2142. doi:10.1175/jcli-d-13-00218.1

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083. doi:10.1126/science.1152538

    Article  CAS  Google Scholar 

  • Beedlow PA, Lee EH, Tingey DT, Waschmann RS, Burdick CA (2013) The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, USA. Agr For Meteorol 169:174–185. doi:10.1016/j.agrformet.2012.10.010

    Article  Google Scholar 

  • Campbell J, Donato D, Azuma DL, Law B (2007) Pyrogenic carbon emission from a large wildfire in Oregon, United States. J Geophys Res Biogeosci 12:G04014. doi:10.1029/2007JG000451

    Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. doi:10.1007/s10021-005-0105-7

    Article  CAS  Google Scholar 

  • Chen HP, Jackson PL (2015) Spatiotemporal mapping of potential mountain pine beetle emergence—Is a heating cycle a valid surrogate for potential beetle emergence? Agr For Meteorol 206:124–136. doi:10.1016/j.agrformet.2015.03.006

    Article  Google Scholar 

  • Cohen WB, Yang ZG, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sens Environ 114:2911–2924. doi:10.1016/j.rse.2010.07.010

    Article  Google Scholar 

  • CONUS (2007) Conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. http://www.soilinfo.psu.edu/index.cgi?soil_data&conus. Accessed 10 Aug 2015

  • Creeden EP, Hicke JA, Buotte PC (2014) Climate, weather, and recent mountain pine beetle outbreaks in the western United States. For Ecol Manag 312:239–251. doi:10.1016/j.foreco.2013.09.051

    Article  Google Scholar 

  • Curtis PS, Hanson PJ, Barford P, Randolf JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agr For Meteorol 113:3–19. doi:10.1016/s0168-1923(02)00099-0

    Article  Google Scholar 

  • Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933. doi:10.1002/2014gl059576

    Article  Google Scholar 

  • Duane MV, Cohen WB, Campbell JL, Hudiburg T, Weyermann D, Turner DP (2010) Implications of two different field-sampling designs on Landsat-based forest age maps used to model carbon in Oregon forests. For Sci 65:405–416

    Google Scholar 

  • Duncanson LI, Dubayah RO, Rosette J, Parker G (2015) The importance of spatial detail: assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation. Remote Sens Environ 168:102–112. doi:10.1016/j.rse.2015.06.021

    Article  Google Scholar 

  • GAP (2014) US Geological Survey, Gap Analysis Program (GAP). National Land Cover, Version 2. http://gapanalysis.usgs.gov/gaplandcover/data/. Accessed 10 Aug 2015

  • Garman SL, Swanson FJ, Spies TA (1999) Past, present, future landscape patterns in the Douglas-fir region of the Pacific Northwest. In: Rochelle JA, Lehmann LA, Wisniewski J (eds) Forest fragmentation: wildlife and management implications. Brill academic publishing, The Netherlands, pp 61–86

  • GCP (2015) Global Carbon Project. http://www.globalcarbonproject.org/carbonbudget/index.htm. Accessed 10 Aug 2015

  • Gockede M, Turner DP, Michalak AM, Vickers D, Law BE (2010) Sensitivity of a subregional scale atmospheric inverse CO2 modeling framework to boundary conditions. J Geophys Res Atmos 115:15. doi:10.1029/2010jd014443

    Google Scholar 

  • Gonzalez P, Battles JJ, Collins BM, Robards T, Saah DS (2015) Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. For Ecol Manag 348:68–77. doi:10.1016/j.foreco.2015.03.040

    Article  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382. doi:10.1016/0169-5347(96)10042-2

    Article  CAS  Google Scholar 

  • Gray AN, Whittier TR (2014) Carbon stocks and changes on Pacific Northwest national forests and the role of disturbance, management, and growth. For Ecol Manag 328:167–178. doi:10.1016/j.foreco.2014.05.015

    Article  Google Scholar 

  • Hasenauer H, Merganicova K, Petritsch R, Pietsch SA, Thornton PE (2003) Validating daily climate interpolations over complex terrain in Austria. Agr For Meteorol 119:87–107. doi:10.1016/0169-5347(96)10042-2

    Article  Google Scholar 

  • Hart SJ, Schoennagel T, Veblen TT, Chapman TB (2015) Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc Natl Acad Sci USA 112:4375–4380. doi:10.1073/pnas.1424037112

    Article  CAS  Google Scholar 

  • Hayes DJ, Turner DP (2012) The need for “apples-to-apples” comparisons of carbon dioxide source and sink estimates. EOS 93:404–405

    Article  Google Scholar 

  • Hibbard KA, Law BE, Reichstein M, Sulzman J (2005) An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70. doi:10.1007/s10533-004-2946-0

    Article  Google Scholar 

  • Hicke JA, Meddens AJH, Allen CD, Kolden CA (2013) Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environ Res Lett 8:8. doi:10.1088/1748-9326/8/3/035032

    Article  Google Scholar 

  • Johnstone JA, Mantua NJ (2014) Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc Natl Acad Sci USA 111:14360–14365. doi:10.1073/pnas.1318371111

    Article  CAS  Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324. doi:10.1038/nature12291

    Article  CAS  Google Scholar 

  • Kennedy RE, Yang ZG, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens Environ 114:2897–2910. doi:10.1016/j.rse.2010.07.008

    Article  Google Scholar 

  • Kennedy RE, Yang ZQ, Cohen WB, Pfaff E, Braaten J, Nelson P (2012) Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens Environ 122:117–133. doi:10.1016/j.rse.2011.09.024

    Article  Google Scholar 

  • Latta G, Temesgen H, Adams D, Barrett T (2010) Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. Forest Ecol Manag 259:720–729. doi:10.1016/0169-5347(96)10042-2

    Article  Google Scholar 

  • Law BE et al (2006) Carbon fluxes across regions: observational constraints at multiple scales. In: Wu J, Jones B, Li H, Loucks O (eds) Scaling and uncertainty analysis in ecology: methods and applications. Columbia university press, New York, pp 167–190

  • Latta G, Temesgen H, Barrett TM (2009) Mapping and imputing potential productivity of Pacific Northwest forests using climate variables. Can J For Res 39:1197–1207. doi:10.1139/x09-046

    Article  Google Scholar 

  • Law BE, Turner D, Campbell J, Van Tuyl S, Ritts WD, Cohen WB (2004) Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Global Change Biol 10:1429–1444. doi:10.1111/j.1365-2486.2004.00822.x

    Article  Google Scholar 

  • Law BE, Waring RH (2015) Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For Ecol Manag 355:4–14. doi:10.1016/j.foreco.2014.11.023

    Article  Google Scholar 

  • Le Quere C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Goldewijk KK, Koven C, Landa CS, Landschutzer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Seferian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N (2014) Global carbon budget 2014. Earth Syst Sci Data 7:47–85. doi:10.5194/essd-7-47-2015

    Article  Google Scholar 

  • Littell JS, McKenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl 19:1003–1021. doi:10.1890/07-1183.1

    Article  Google Scholar 

  • Liu JX et al (2011) Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000. Ecol Model 222:2333–2341. doi:10.1016/j.ecolmodel.2011.03.042

    Article  CAS  Google Scholar 

  • Lu XL et al (2013) A contemporary carbon balance for the Northeast Region of the United States. Environ Sci Technol 47:13230–13238. doi:10.1021/es403097z

    Article  CAS  Google Scholar 

  • McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5:669–672. doi:10.1038/nclimate2641

    Article  Google Scholar 

  • Meigs GW, Kennedy RE, Gray AN, Gregory MJ (2015) Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest region, USA. Remote Sens Environ 339:71–86. doi:10.1016/j.foreco.2014.11.030

    Google Scholar 

  • Meigs GW, Turner DP, Ritts WD, Yang ZQ, Law BE (2011) Landscape-scale simulation of heterogeneous fire effects on pyrogenic carbon emissions, tree mortality, and net ecosystem production. Ecosystems 14:758–775. doi:10.1007/s10021-011-9444-8

    Article  CAS  Google Scholar 

  • Meinzer FC (1982) The effect of vapor pressure on stomatal control of gas exchange in Douglas-fir (Psuedotsuga menziesii) seedlings. Oecologia 54:236–242. doi:10.1007/bf00378398

    Article  Google Scholar 

  • Mote PW (2003) Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. Northwest Sci 77:271–282

    Google Scholar 

  • Mote PW (2006) Climate-driven variability and trends in mountain snowpack in western North America. J Clim 19:6209–6220. doi:10.1175/jcli3971.1

    Article  Google Scholar 

  • Mote PW, Salathe EP (2010) Future climate in the Pacific Northwest. Clim Change 102:29–50. doi:10.1007/s10584-010-9848-z

    Article  Google Scholar 

  • MTBS (2015) Monitoring Trends in Burn Severity. http://www.mtbs.gov/. Accessed 10 Aug 2015

  • NLCD (2006) National land cover data. http://www.epa.gov/mrlc/nlcd.html. Accessed 10 Aug 2015

  • OCO-2 (2015) Orbiting Carbon Observatory-2. http://oco.jpl.nasa.gov/. Accessed 10 Aug 2015

  • Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, U.S.A. Can J For Res 32:725–741. doi:10.1139/x02-011

    Article  Google Scholar 

  • Omernik JM (1987) Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Ann Assoc Am Geogr 77:118–125. doi:http://www.epa.gov/wed/pages/ecoregions/ecoregions.htm. Accessed 10 Aug 2015

  • ORNL (2014) Oak Ridge National Laboratory. http://daac.ornl.gov/DAYMET/guides/Daymet_mosaics.html#Daymet_m_citation. Accessed 10 Aug 2015

  • Oswalt SN, Smith WB, Miles PD, Pugh SA (2014) Forest Resources of the United States, 2012: a technical document supporting the forest Service 2015 update of the RPA Assessment. General Technical Report WO-91. U.S. Department of Agriculture, Forest Service

  • Oyler JW, Dobrowski SZ, Ballantyne AP, Klene AE, Running SW (2015) Artificial amplification of warming trends across the mountains of the western United States. Geophys Res Lett 42:153–161. doi:10.1002/2014gl062803

    Article  Google Scholar 

  • Pederson GT, Graumlich LJ, Fagre DB, Kipfer T, Muhlfeld CC (2010) A century of climate and ecosystem change in Western Montana: what do temperature trends portend? Clim Change 98:133–154

    Article  Google Scholar 

  • Peterman W, Bachelet D, Ferschweiler K, Sheehan T (2014) Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model. Ecol Model 294:84–93. doi:10.1016/j.ecolmodel.2014.09.025

    Article  Google Scholar 

  • Preisler HK, Hicke JA, Ager AA, Hayes JL (2012) Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology 93:2421–2434

    Article  Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogee J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grunwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana JF, Sanz MJ, Vesala T, Zhao M (2006) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biol 12:1–18. doi:10.1111/j.1365-2486.2006.01224.x

    Article  Google Scholar 

  • Rogers BM, Neilson RP, Drapek R, Lenihan JM, Wells JR, Bachelet D, Law BE (2011) Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J Geophys Res Biogeosci 116:13. doi:10.1029/2011jg001695

    Google Scholar 

  • Schwalm CR, Williams CA, Schaefer K, Baldocchi D, Black TA, Goldstein AH, Law BE, Oechel WC, Kyaw TPU, Scott RL (2012) Reduction in carbon uptake during turn of the century drought in western North America. Nat Geosci 5:551–556. doi:10.1038/ngeo1529

    Article  CAS  Google Scholar 

  • Soule PT, Knapp PA (2013) Radial growth rates of two co-occurring coniferous trees in the Northern Rockies during the past century. J Arid Environ 94:87–95. doi:10.1016/j.jaridenv.2013.02.005

    Article  Google Scholar 

  • Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A (2009) Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. Ecol Appl 19:305–320. doi:10.1890/07-1755.1

    Article  Google Scholar 

  • Thomas CK, Law BE, Irvine J, Martin JG, Pettijohn JC, Davis KJ (2009) Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J Geophys Res Biogeosci 114:22. doi:10.1029/2009jg001010

    Google Scholar 

  • Thomas JW, Franklin JF, Gordon J, Johnson KN (2006) The northwest forest plan: origins, components, implimentation experience, and suggestions for change. Conserv Biol 20:277–287. doi:10.1111/j.1523-1739.2006.00385.x

    Article  Google Scholar 

  • Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Golstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr For Meteorol 113:185–222. doi:10.1111/j.1523-1739.2006.00385.x

    Article  Google Scholar 

  • Thornton PE, Thornton MM, Mayer BW, Wilhelmi Y, Wei Y, Devarakonda R, Cook RB (2014) Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. Available: http://daac.ornl.gov

  • Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251. doi:10.1016/s0022-1694(96)03128-9

    Article  Google Scholar 

  • Turner DP, Ritts D, Kennedy RE, Gray A, Yang Z (2015a) Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance. Carbon Balance Manag 10:12. doi:10.1186/s13021-015-0022-9

    Article  Google Scholar 

  • Turner DP, Conklin DR, Bolte JP (2015b) Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA. Clim Change 133:335–348. doi:10.1007/s10584-015-1465-4

    Article  CAS  Google Scholar 

  • Turner DP, Ritts WD, Yang ZQ, Kennedy RE, Cohen WB, Duane MV, Thornton PE, Law BE (2011a) Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system. For Ecol Manag 262:1318–1325. doi:10.1007/s10584-015-1465-4

    Article  Google Scholar 

  • Turner DP, Gockede M, Law BE, Ritts WD, Cohen WB, Yang Z, Hudiburg T, Kennedy R, Duane M (2011b) Multiple constraint analysis of regional land-surface carbon flux. Tellus 63B:207–221. doi:10.111/j.1600-0889.2011.00525.x

    Article  Google Scholar 

  • Turner DP, Ritts WD, Law BE, Cohen WB, Yang Z, Hudiburg T, Campbell JL, Duane M (2007) Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States. Biogeosciences 4:597–612

    Article  CAS  Google Scholar 

  • Turner J, Long JN (1975) Accumulation of organic matter in a series of Douglas-fir stands. Can J For Res 5:681–690

    Article  Google Scholar 

  • Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape to regional scale analysis of the carbon cycle. Bioscience 54:573–584. doi:10.1641/0006-3568(2004)054[0573:irsaep]2.0.co;2

    Article  Google Scholar 

  • USDA (2011) U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2008. Technical Bulletin No. 1930

  • USGS (2015) Omernik Level 3 Ecoregions for the U.S. (including Alaska) for Use as a Reference Data Collection. https://www.sciencebase.gov/catalog/folder/55c77f7be4b08400b1fd82d4?offset=60&max=30

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524. doi:10.1126/science.1165000

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940–943. doi:10.1126/science.1128834

    Article  CAS  Google Scholar 

  • Wharton S, Falk M, Bible K, Schroeder M, Paw KT (2012) Old-growth CO2 flux measurements reveal high sensitivity to climate anomalies across seasonal, annual and decadal time scales. Agr For Meteorol 161:1–14. doi:10.1016/j.agrformet.2012.03.007

    Article  Google Scholar 

  • White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85

    Article  Google Scholar 

  • Woudenberg SW, Conkling BL, O’Connell BM, LaPoint EB, Turner JA, Waddell KL (2010) The Forest Inventory and Analysis database: description and user manual version 4.0 for Phase 2, USDA Forest Service, General Technical Report RMRS-GTR-245, USDA Forest Service, General Technical Report RMRS-GTR-245

Download references

Acknowledgments

Support was provided by the NASA Terrestrial Ecology Program (NNX12AK59G). Landsat data from US Geological Survey Eros Data Center, Daymet climate data from the North American Carbon Program (served from the Oak Ridge National Laboratory Biogeochemical Dynamics Distributed Active Archive Center), and plot data from the USDA Forest Service Forest Inventory and Analysis Program were essential to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Turner.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, D.P., Ritts, W.D., Kennedy, R.E. et al. Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest. Reg Environ Change 16, 2345–2355 (2016). https://doi.org/10.1007/s10113-016-0956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0956-9

Keywords

Navigation