Regional Environmental Change

, Volume 16, Supplement 1, pp 69–82 | Cite as

Quantifying fluctuations in winter productive cropped area in the Central Indian Highlands

  • Pinki Mondal
  • Meha Jain
  • Mateusz Zukowski
  • Gillian Galford
  • Ruth DeFries
Original Paper

Abstract

The Central Indian Highland landscape (CIHL) represents a complex, diverse, and highly human-modified system. Nearly half the landscape is cropland, yet it hosts 21 protected areas surrounded and connected by forests. Changing farming practices with increasing access to irrigation might alter this intensifying landscape in the near future particularly in light of weather variability. We analyzed a decade of remote sensing data for cropping patterns and climatic factors combined with census data for irrigation and demographic factors to understand winter cropping trajectories in the CIHL. We quantified ‘productive cropped area’ (PCA), defined as the area with planted crop that is green at the peak of the winter growing season. We find three primary trajectories in PCA—increasing, fluctuating, and decreasing. The most dominant trend is fluctuating PCA in two-thirds of the districts, ranging from ~2.11 million to ~3.73 million ha between 2001 and 2013, which is associated with village-level access to irrigation and local labor dynamics. In 58 % of all districts, clay soils were associated with winter cropping (p < 0.05). Increasing irrigation is associated with increased winter PCA in most (94 %) districts (p < 0.00001). We find strong negative association between PCA and land surface temperature (LST) in most (66 %) districts (p < 0.01). LST closely corresponds to daytime mean air temperature (p < 0.001) for available meteorological stations. Fine-scale meteorological and socioeconomic data, however, are needed to further disentangle impacts of these factors on PCA in this landscape.

Keywords

Agriculture Crop Climate Small-holder farmers Central India 

Supplementary material

10113_2016_946_MOESM1_ESM.pptx (155 kb)
Fig. S1Changes in winter irrigation during 2001-13 in the five district categories with – (a) low increasing, (b) high increasing, (c) low fluctuating, (d) high fluctuating, and (e) decreasing cropped area. Irrigation data for 2012 was not available for any district, and was interpolated in these graphs. Irrigation data for 2001-2013 was not available for the districts of Wardha, Nagpur, Bhandara and Gondiya, hence these districts were not included in these graphs (PPTX 154 kb)
10113_2016_946_MOESM2_ESM.tif (114 kb)
Fig. S2Enhanced Vegetation Index (EVI) time-series data for representative shrub pixel and crop pixel during 2000-2010. Shrub phenology indicates a green-up during late monsoon, whereas crop pixel shows EVI peaks during both monsoon and winter, thus representing a double-crop pixel. Our scaling method focuses only on winter season (defined by solid black lines) for each year, hence shrubland is unlikely to influence winter crop signal (TIFF 113 kb)
10113_2016_946_MOESM3_ESM.pdf (103 kb)
Fig. S3Graphs showing: (a) productive cropped area (ha) vs. agricultural census data on winter cropped area (ha) for all districts in Madhya Pradesh for 2001–2013; (b) productive cropped area (ha) vs. agricultural census data on winter + all cropped area (ha) for all districts in Madhya Pradesh for 2001–2013; (c) mean percent productive cropped area at the pixel level for all districts compared to the yield of wheat (million ton/ha) as defined in the census data for all years available during 2001–2013; (d) mean percent productive cropped area at the pixel level for all districts compared to the yield of winter pulse (million ton/ha) as defined in the census data for all years available during 2001–2013. Inset values denote adjusted R2 values for each of these graphs (PDF 103 kb)
10113_2016_946_MOESM4_ESM.tif (66.9 mb)
Fig. S4Maps showing changes in productive cropped area for each year between 2001 and 2013 (TIFF 68487 kb)
10113_2016_946_MOESM5_ESM.pptx (94 kb)
Fig. S5Temporal mean of the productive cropped area percentages for the districts with (a) increasing cropped area, and (b) fluctuating cropped area. The maximum break classification method was used to differentiate between the ‘high’ and ‘low’ groups (divided by solid vertical line) in each of these two categories (PPTX 94 kb)
10113_2016_946_MOESM6_ESM.tif (1010 kb)
Fig. S6Spatial distribution of soil types in the study region. This map has been reclassified from the Food and Agriculture Organization of the United Nations (FAO) digital soil map of the world (FAO 2003) based on the soil types most abundant in each of the study districts. Detailed composition of each of the soil types has been listed in Table 1 (TIFF 1010 kb)
10113_2016_946_MOESM7_ESM.pdf (155 kb)
Fig. S7Association between MODIS land surface temperature (LST) and winter daytime mean air temperature at five meteorological stations located within the study landscape. Air temperature data are from station locations, and LST values are from corresponding pixels within which these stations are located (PDF 155 kb)
10113_2016_946_MOESM8_ESM.docx (18 kb)
Supplementary material 8 (DOCX 18 kb)

References

  1. Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A (2006) Determining global population distribution: methods, applications and data. Adv Parasit 62:119–156. doi:10.1016/S0065-308X(05)62004-0 CrossRefGoogle Scholar
  2. Census of India (2001) Office of the Registrar General & Census Commissioner, New Delhi. Metadata available from http://censusindia.gov.in/Metadata/Metada.htm#2m
  3. Census of India (2011) Office of the Registrar General & Census Commissioner, New DelhiGoogle Scholar
  4. Center for International Earth Science Information Network—CIESIN—Columbia University, International Food Policy Research Institute—IFPRI, The World Bank, Centro Internacional de Agricultura Tropical—CIAT (2011) Global Rural–Urban Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades. doi:10.7927/H4GH9FVG. Accessed 30 Jan 2015
  5. Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103:791–802Google Scholar
  6. Chen C, Baethgen WE, Robertson A (2013) Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Clim Change 116:767–788. doi:10.1007/s10584-012-0509-2 CrossRefGoogle Scholar
  7. Cirera X, Masset E (2010) Income distribution trends and future food demand. Philos Trans R Soc Lond B Biol Sci 365:2821–2834. doi:10.1098/rstb.2010.0164 CrossRefGoogle Scholar
  8. Dheeravath V, Thenkabail PS, Chandrakantha G, Noojipady P, Reddy GPO, Biradar CM, Gumma MK, Velpuri M (2010) Irrigated areas of India derived using MODIS 500 m time series for the years 2001–2003. ISPRS J Photogramm Remote Sens 65:42–59. doi:10.1016/j.isprsjprs.2009.08.004 CrossRefGoogle Scholar
  9. Elliott AC, Woodward WA (2006) Statistical analysis quick reference guidebook: with SPSS examples. Sage, Beverly HillsGoogle Scholar
  10. FAO (2003) The digital soil map of the world, version 3.6. Food and Agriculture Organization of the United Nations. http://data.fao.org/map?entryId=446ed430-8383-11db-b9b2-000d939bc5d8. Accessed 30 Jan 2015
  11. FAO (2009) The state of food insecurity in the world: economic crises—impacts and lessons learned. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  12. FAO (2014) The state of food insecurity in the world 2014. Strengthening the enabling environment for food security and nutrition. Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  13. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DP (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452 CrossRefGoogle Scholar
  14. Forest Survey of India (2013) India State of Forest Report 2013. http://fsi.nic.in/cover_2013/sfr_forest_cover.pdf Accessed 20 Sept 2015
  15. Freebairn DK (1973) Income disparities in the agricultural sector: regional and institutional stresses. In: Poleman TT, Freebairn DK (eds) Food population and employment: the impact of the green revolution. Praeger, New York, pp 97–119Google Scholar
  16. Frolking S, Yeluripati JB, Douglas E (2006) New district-level maps of rice cropping in India: a foundation for scientific input into policy assessment. Field Crop Res 98:164–177. doi:10.1016/j.fcr.2006.01.004 CrossRefGoogle Scholar
  17. Gadgil S, Kumar KR (2006) The Asian monsoon—agriculture and economy. In: Wang B (ed) The Asian monsoon. Praxis and Springer, Berlin, pp 651–683CrossRefGoogle Scholar
  18. Gajbhiye KS, Mandal C (2000) Agro-ecological zones, their soil resource and cropping systems. National Bureau of Soil Survey and Land Use Planning, NagpurGoogle Scholar
  19. Galford GL, Mustard JF, Melillo J, Gendrin A, Cerri CC, Cerri CEP (2008) Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens Environ 112:576–587. doi:10.1016/j.rse.2007.05.017 CrossRefGoogle Scholar
  20. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383 CrossRefGoogle Scholar
  21. Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB (2013a) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc R Soc B 280:20122190. doi:10.1098/rspb.2012.2190 CrossRefGoogle Scholar
  22. Gourdji SM, Sibley AM, Lobell DB (2013b) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:024041. doi:10.1088/1748-9326/8/2/024041 CrossRefGoogle Scholar
  23. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693 CrossRefGoogle Scholar
  24. Huete A, Didan K, Miura T, Rodrigueza EP, Gaoa X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. doi:10.1016/S0034-4257(02)00096-2 CrossRefGoogle Scholar
  25. IAASTD (2009) Agriculture at a crossroads: global report. International Assessment of Agricultural Knowledge, Science and Technology for Development, Washington DCGoogle Scholar
  26. IRI/LDEO Climate Data Library (2014) http://iridl.ldeo.columbia.edu. Accessed 8 Dec 2014
  27. ISRIC/WDC-Soils (2013) http://soilgrids.org/. Accessed 20 Sept 2015
  28. Jain M, Mondal P, DeFries RS, Small C, Galford GL (2013) Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors. Remote Sens Environ 134:210–223. doi:10.1016/j.rse.2013.02.029 CrossRefGoogle Scholar
  29. Jiang L, Ma E, Deng X (2014) Impacts of Irrigation on the heat fluxes and near-surface temperature in an inland irrigation area of Northern China. Energies 7:1300–1317. doi:10.3390/en7031300 CrossRefGoogle Scholar
  30. Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal RB, Lal M, Sehgal M (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88Google Scholar
  31. Kaur S (2014) Nominal wage rigidity in village labor markets. National Bureau of Economic Research working paper series no. 20770. http://www.nber.org/papers/w20770. Accessed 30 Jan 2015
  32. Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci 365:2793–2807. doi:10.1098/rstb.2010.0149 CrossRefGoogle Scholar
  33. Koehler AK, Challinor AJ, Hawkins E, Asseng S (2013) Influences of increasing temperature on Indian wheat: quantifying limits to predictability. Environ Res Lett 8:034016. doi:10.1088/1748-9326/8/3/034016 CrossRefGoogle Scholar
  34. Kumar KK, Kumar RK, Ashrit RG, Deshpande NR, Hansen JW (2004) Climate impacts on Indian agriculture. Int J Climatol 24:1375–1393. doi:10.1002/joc.1081 CrossRefGoogle Scholar
  35. Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345Google Scholar
  36. Laiolo P, Tella JL (2006) Fate of unproductive and unattractive habitats: recent changes in Iberian steppes and their effects on endangered avifauna. Environ Conserv 33:223–232. doi:10.1017/S0376892906003146 CrossRefGoogle Scholar
  37. Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118. doi:10.1016/j.landusepol.2009.09.003 CrossRefGoogle Scholar
  38. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA 108:3465–3472. doi:10.1073/pnas.1100480108 CrossRefGoogle Scholar
  39. Lehner B, Reidy Liermann C, Revenga C, Vorosmarty C, Fekete B, Crouzet P, Doll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rodel R, Sindorf N, Wisser D (2011a) Global reservoir and dam database, version 1 (GRanDv1): reservoirs, revision 01. NASA Socioeconomic Data and Applications Center (SEDAC), PalisadesGoogle Scholar
  40. Lehner B, Reidy Liermann C, Revenga C, Vorosmarty C, Fekete B, Crouzet P, Doll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rodel R, Sindorf N, Wisser D (2011b) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502. doi:10.1890/100125 CrossRefGoogle Scholar
  41. Lobell DB, Bonfils CJ, Kueppers LM, Snyder MA (2008) Irrigation cooling effect on temperature and heat index extremes. Geophys Res Lett. doi:10.1029/2008GL034145 Google Scholar
  42. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531 CrossRefGoogle Scholar
  43. Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change 2:186–189. doi:10.1038/nclimate1356 CrossRefGoogle Scholar
  44. Mearns LO, Rosenzweig C, Goldberg R (1996) The effect of changes in daily and interannual climatic variability on Ceres-wheat: a sensitivity study. Clim Change 32:257–292. doi:10.1007/BF00142465 CrossRefGoogle Scholar
  45. Meinzen-Dick R (2007) Beyond panaceas in water institutions. Proc Natl Acad Sci USA 104:15200–15205. doi:10.1073/pnas.0702296104 CrossRefGoogle Scholar
  46. Mendelsohn R (2008) The impact of climate change on agriculture in developing countries. J Nat Resour Policy Res 1:5–19. doi:10.1080/19390450802495882 CrossRefGoogle Scholar
  47. Mondal P, Jain M, Robertson AW, Galford GL, Small C, DeFries RS (2014) Winter crop sensitivity to inter-annual climate variability in central India. Clim Change 126:61–76. doi:10.1007/s10584-014-1216-y CrossRefGoogle Scholar
  48. Mondal P, Jain M, DeFries R, Galford G, Small C (2015) Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions. J Environ Manage 148:21–30. doi:10.1016/j.jenvman.2014.02.026 CrossRefGoogle Scholar
  49. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685. doi:10.1073/pnas.0701855104 CrossRefGoogle Scholar
  50. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257. doi:10.1038/nature11420 CrossRefGoogle Scholar
  51. Naylor R (2011) Expanding the boundaries of agricultural development. Food Secur 3:233–251. doi:10.1007/s12571-011-0123-6 CrossRefGoogle Scholar
  52. Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58. doi:10.1016/j.agee.2008.01.019 CrossRefGoogle Scholar
  53. Padhi K (2007) Agricultural labour in India—a close look. Orissa Review, February–March 23–28. http://knowledgecentre.drwa.org.in/green/pdffiles/page23-28.pdf. Accessed 30 Oct 2014
  54. Pelletier N, Tyedmers P (2010) Forecasting potential global environmental costs of livestock production 2000–2050. P Natl Acad Sci USA 107:18371–18374. doi:10.1073/pnas.1004659107 CrossRefGoogle Scholar
  55. Prober SM, Smith FP (2009) Enhancing biodiversity persistence in intensively used agricultural landscapes: a synthesis of 30 years of research in the Western Australian wheatbelt. Agric Ecosyst Environ 132:173–191. doi:10.1016/j.agee.2009.04.005 CrossRefGoogle Scholar
  56. Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293. doi:10.1038/ncomms2296 CrossRefGoogle Scholar
  57. Ren J, Chen Z, Zhou Q, Tang H (2008) Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int J Appl Earth Obs 10:403–413. doi:10.1016/j.jag.2007.11.003 CrossRefGoogle Scholar
  58. Sanghi A, Mendelsohn R (2008) The impacts of global warming on farmers in Brazil and India. Glob Environ Change 18:655–665. doi:10.1016/j.gloenvcha.2008.06.008 CrossRefGoogle Scholar
  59. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104:19703–19708. doi:10.1073/pnas.0701976104 CrossRefGoogle Scholar
  60. Shah T, Roy AD, Qureshi AS, Wang J (2003) Sustaining Asia’s groundwater boom: an overview of issues and evidence. Nat Resour Forum 27:130–141. doi:10.1111/1477-8947.00048 CrossRefGoogle Scholar
  61. Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Oechel WC, Schmid HP, Wofsy SC, Xu L (2006) On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J Geophys Res. doi:10.1029/2006JG000162 Google Scholar
  62. Singh RB, Kumar P, Woodhead T (2002) Smallholder farmers in India: food security and agricultural policy. FAO Regional Office for Asia and the Pacific, BangkokGoogle Scholar
  63. Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization. Pearson Prentice Hall, New JerseyGoogle Scholar
  64. Teixeira AMG, Soares BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. For Ecol Manag 257:1219–1230. doi:10.1016/j.foreco.2008.10.011 CrossRefGoogle Scholar
  65. The Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. LondonGoogle Scholar
  66. Thenkabail PS, Dheeravath V, Biradar CM, Gangalakunta ORP, Noojipady P, Gurappa C, Velpuri M, Gumma M, Li Y (2009) Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens 1:50–67. doi:10.3390/rs1020050 CrossRefGoogle Scholar
  67. Thurow R, Kilman S (2009) Enough: why the world’s poorest starve in an age of plenty. Perseus Books, New YorkGoogle Scholar
  68. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264. doi:10.1073/pnas.1116437108 CrossRefGoogle Scholar
  69. US Geological Survey Land Processes Distributed Active Archive Center (2014) https://lpdaac.usgs.gov/. Accessed 30 Oct 2014
  70. Wade R (1984) Managing a drought with canal irrigation: a south Indian case. Agric Adm Ext 17:177–202. doi:10.1016/0309-586X(84)90041-4 Google Scholar
  71. Wardlow BD, Egbert SL (2010) A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas. Int J Remote Sens 31:805–830. doi:10.1080/01431160902897858 CrossRefGoogle Scholar
  72. Wardlow B, Egbert S, Kastens J (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens Environ 108:290–310. doi:10.1016/j.rse.2006.11.021 CrossRefGoogle Scholar
  73. Wood SA, Jina AS, Jain M, Kristjanson P, DeFries RS (2014) Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob Environ Change 25:163–172. doi:10.1016/j.gloenvcha.2013.12.011 CrossRefGoogle Scholar
  74. Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore B (2005) Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ 95:480–492. doi:10.1016/j.rse.2004.12.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pinki Mondal
    • 1
  • Meha Jain
    • 2
  • Mateusz Zukowski
    • 3
  • Gillian Galford
    • 4
  • Ruth DeFries
    • 1
  1. 1.Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkUSA
  2. 2.Department of Environmental Earth System ScienceStanford UniversityStanfordUSA
  3. 3.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  4. 4.Gund Institute for Ecological Economics, Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonUSA

Personalised recommendations