Regional Environmental Change

, Volume 16, Issue 7, pp 2071–2085 | Cite as

Last of the wild revisited: assessing spatial patterns of human impact on landscapes in Southern Patagonia, Chile

  • Luis InostrozaEmail author
  • Ingo Zasada
  • Hannes J. König
Original Article


Human activities are continuously expanding at a global scale and having an increasing effect on the remaining natural ecosystems in remote areas, such as the Magellan Region of southern Patagonia, Chile. In addition to extensive livestock holdings, aquaculture and tourism are advancing into formerly undisturbed areas, and insufficient information on the spatial scope and intensity of these alterations is available to inform and support conservation policies. The aim of this study was to spatially analyse the degree, scope and spatial distribution of anthropogenic alterations. Accordingly, two spatially explicit indexes, the degree of anthropogenic alteration (DAA) and human influence index (HII), have been applied. The results show a significant spatial overestimation of the remaining undisturbed natural areas. Despite low population densities and extensive conservation designations, a major share of the total area has been anthropogenically altered. Depending on the measure type, between 53.1 % (DAA) and 68.1 % of the area (HII) needs to be considered as influenced by human activity in some way. Our findings challenge previous studies by the Wildlife Conservation Society (WCS and CIESIN in Last of the wild project, version 2, 2005 (LWP-2): last of the wild dataset (Geographic), NASA socioeconomic data and applications center (SEDAC), Palisades, 2005). Their worldwide assessment of pristine natural environments indicated that a much smaller part of the Magellan region has been subject to human influence. The chosen methodologies represent an opportunity to detect and monitor human influence at small spatial scales, which has heretofore remained unnoticed. Because such alterations are becoming more frequent in remote regions, the assessment approaches presented here provide important information on human–environment interactions to support land-use and nature conservation policy design. In addition, small-scale structures and different types of economic activities are considered to support policies that can protect the remaining natural areas from human encroachment. Moreover, implications of the proposed methodology for biodiversity conservation policy are discussed.


Land-use change Anthropogenic alterations Undisturbed natural areas Conservation policy Spatial assessment GIS indexes 


  1. Anderson JE (1991) A conceptual framework for evaluating and quantifying naturalness. Conserv Biol 5(3):347–352. doi: 10.1111/j.1523-1739.1991.tb00148.x CrossRefGoogle Scholar
  2. Angermeier PL (2000) The natural imperative for biological conservation. Conserv Biol 14(2):373–381. doi: 10.1046/j.1523-1739.2000.98362.x CrossRefGoogle Scholar
  3. Bomans K, Steenberghen T, Dewaelheyns V, Leinfelder H, Gulinck H (2010) Underrated transformations in the open space–the case of an urbanized and multifunctional area. Landsc Urban Plan 94(3–4):196–205. doi: 10.1016/j.landurbplan.2009.10.004 CrossRefGoogle Scholar
  4. Breuste J, Haase D, Elmqvist T (2013) Urban landscapes and ecosystem services. In: Wratten S, Sandhu H, Cullen R, Costanza R (eds) Ecosystem services in agricultural and urban landscapes. Wiley, Hoboken, pp 83–104CrossRefGoogle Scholar
  5. CBD (2000) Convention on biological diversity. Accessed 5 Nov 2014
  6. CONAF-CONAMA (2006) Catastro de uso del suelo y vegetación, región de Magallanes y Antártica Chilena. Monitoreo y actualización, SantiagoGoogle Scholar
  7. Crutzen PJ (2002) The “anthropocene”. J Phys IV France 12(10):1–5. doi: 10.1051/jp4:20020447 CrossRefGoogle Scholar
  8. de Smedt P (2010) The use of impact assessment tools to support sustainable policy objectives in Europe. Ecol Soc 15(4):30–39Google Scholar
  9. Edarra Indurain A (1997) Botanica ambiental aplicada: las plantas y el equilibrio ecologico de nuestra tierra, 2nd edn. EUNSA, PamplonaGoogle Scholar
  10. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6(8):439–447. doi: 10.1890/070062 CrossRefGoogle Scholar
  11. Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K, Verburg PH (2013) Used planet: a global history. Proc Natl Acad Sci USA 110(20):7978–7985. doi: 10.1073/pnas.1217241110 CrossRefGoogle Scholar
  12. Encyclopædia Britannica Online (EBO), s. v. “Patagonia”, Accessed 19 Aug 2015,
  13. Evans TP, Kelley H (2008) Assessing the transition from deforestation to forest regrowth with an agent-based model of land cover change for south-central Indiana (USA). Geoforum 39(2):819–832. doi: 10.1016/j.geoforum.2007.03.010 CrossRefGoogle Scholar
  14. Fischer-Kowalski M (1998) Society’s metabolism. J Ind Ecol 2(1):61–78. doi: 10.1162/jiec.1998.2.1.61 CrossRefGoogle Scholar
  15. Garcés E (2009) Tierra del Fuego Como paisaje cultural extremo. Conserva 13:95–108Google Scholar
  16. Gomez Orea D (2002) Ordenacion territorial. Mundi-Prensa, MadridGoogle Scholar
  17. Grünbühel CM, Haberl H, Schandl H, Winiwarter V (2003) Socioeconomic metabolism and colonization of natural processes in SangSaeng Village: material and energy flows, Land use, and cultural change in Northeast Thailand. Hum Ecol 31(1):53–86. doi: 10.1023/A:1022882107419 CrossRefGoogle Scholar
  18. Gucinski, H. (2001) Forest roads: a synthesis of scientific information. DIANE PublishingGoogle Scholar
  19. Hannah L, Carr JL, Lankerani A (1995) Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers Conserv 4(2):128–155. doi: 10.1007/BF00137781 CrossRefGoogle Scholar
  20. Helming K, Diehl K, Kuhlman T, Jansson T, Verburg PH, Bakker M, Pérez-Soba M, Jones L, Verkerk PJ, Tabbush P, Morris JB, Drillet Z, Farrington J, LeMouél P, Zagame P, Stuczynski T, Siebielec G, Sieber S, Wiggering H (2011) Ex ante impact assessment of policies affecting Land use, part B: application of the analytical framework. Ecol Soc 16(1):27–34Google Scholar
  21. Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39(5):708–720. doi: 10.1046/j.1365-2664.2002.00746.x CrossRefGoogle Scholar
  22. Hunter M Jr (1996) Benchmarks for managing ecosystems: are human activities natural? Conserv Biol 10(3):695–697. doi: 10.1046/j.1523-1739.1996.10030695.x CrossRefGoogle Scholar
  23. Inostroza L (2005) La huella Urbana y ecológica de Magallanes. Una mirada sobre nuestra insostenibilidad. Rev Urbano 8:28–40Google Scholar
  24. Inostroza L (2008) Turismo en la Patagonia: una Amenaza para la Integridad Ecológica del Medio Natural. Cuad Invest Urbanística 56:122Google Scholar
  25. Inostroza L (2012) Patagonia, Antropización de un Territorio natural. Cuad Invest Urbanística 83:86Google Scholar
  26. Inostroza L (2014) Measuring urban ecosystem functions through “Technomass”—a novel indicator to assess urban metabolism. Ecol Indic 42:10–19. doi: 10.1016/j.ecolind.2014.02.035 CrossRefGoogle Scholar
  27. Inostroza L (2015) El mito de pristinidad y los usos efectivos del territorio de la región de Magallanes, Patagonia Chilena: forestal, minería y acuicultura. Estud Geográficos LXXVI:141–175Google Scholar
  28. Instituto Geográfico Militar (IGM) (1983) Geografía de Chile Tomo II Geomorfología, Santiago de ChileGoogle Scholar
  29. Instituto Nacional de Estadísticas (2005) Ciudades, Pueblos, Aldeas y Caseríos. Available at:
  30. International Union for Conservation of Nature (IUCN) (1987) The IUCN position statement on translocation; introductions, reintroductions and re-stocking, approved by the 22nd Meeting of the IUCN Council, Gland, Switzerland, 4 September 1987. Accessed 5 Nov 2014
  31. Jacobi JD, Scott JM (1985) An assessment of the current status of native upland habitats and asso- ciated endangered species on the island of Hawai’i. In: Stone CP, Scott JM (eds) Hawai’I’s terrestrial ecosystems: preservation and management. University of Hawaii Cooperative National Park Resources Studies Unit, Honolulu, pp 1–21Google Scholar
  32. König HJ, Schuler J, Suarma U, McNeill D, Imbernon J, Damayanti F, Dalimunthe SA, Uthes S, Sartohadi J, Helming K, Morris J (2010) Assessing the impact of land use policy on urban-rural sustainability using the FoPIA approach in Yogyakarta, Indonesia. Sustainability 2(7):1991–2009. doi: 10.3390/su2071991 CrossRefGoogle Scholar
  33. König HJ, Uthes S, Schuler J, Zhen L, Purushothaman S, Suarma U, Sghaier M, Makokha S, Helming K, Sieber S, Chen L, Brouwer F, Morris J, Wiggering H (2013) Regional impact assessment of land use scenarios in developing countries using the FoPIA approach: findings from five case studies. J Environ Manage 127(Supplement):S56–S64CrossRefGoogle Scholar
  34. König HJ, Zhen L, Helming K, Uthes S, Yang L, Cao X, Wiggering H (2014) Assessing the impact of the sloping land conversion programme on rural sustainability in Guyuan, Western China. Land Degrad Dev 25(4):385–396. doi: 10.1002/ldr.2164 CrossRefGoogle Scholar
  35. Kowarik I (1999) Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. Handbuch für Naturschutz und Landschaftspflege (eds W. Konold, R. Böcker & U. Hampicke), V-2·1, pp. 1–18. Ecomed, Landsberg, GermanyGoogle Scholar
  36. Lambin EF, Baulies X, Bockstael N, Fischer G, Krug R, Leemans EF, Moran EF, Rindfuss RR, Sato Y, Skole D, Turner II, BL, Vogel C (1999) Land-use and land-cover change (LUCC): implementation strategy. IGBP Report no. 48 IHDP Report no. 10. IGBP, BonnGoogle Scholar
  37. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269. doi: 10.1016/S0959-3780(01)00007-3 CrossRefGoogle Scholar
  38. LaRosa D, Lorz C, König HJ, Fürst C (2014) Spatial information and participation in socio-ecological systems: experiences, tools and lessons learned for land-use planning. IForest Biogeosci For 7:386–389. doi: 10.3832/ifor0093-007 Google Scholar
  39. Lesslie R, Malsen M (1995) National wilderness inventory handbook of procedures, content and usage, 2nd edn. Australian Government Publishing Service, Canberra (Australia)Google Scholar
  40. Leu M, Hanser SE, Knick ST (2008) The human footprint in the west: a large-scale analysis of anthropogenic impacts. Ecol Appl 18(5):1119–1139. doi: 10.1890/07-0480.1 CrossRefGoogle Scholar
  41. Li S, Verburg PH, Lv S, Wu J, Li X (2012) Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia. China. 12:461–474Google Scholar
  42. Lockwood M, Worboys G, Kothari A (Eds.) (2012) Managing protected areas: a global guide. RoutledgeGoogle Scholar
  43. Loidi J (1994) Phytosociology applied to nature conservation and land management. In: Song Y, Dierschke H, Wang X (eds) Applied vegetation ecology. East China Normal University Press, Shangai, pp 17–30Google Scholar
  44. Machado A (2004) An index of naturalness. J Nat Conserv 12(2):95–110. doi: 10.1016/j.jnc.2003.12.002 CrossRefGoogle Scholar
  45. Machado A, Redondo C, Carralero I (2004) Ensayando un índice de naturalidad en Canarias. In: Fernández-Palacios JM, Morici C (eds) Ecología insular. Asociación Española de Ecología Terrestre, Las Palmas (Canary Islands), pp 413–438Google Scholar
  46. Margules C, Usher MB (1981) Criteria used in assessing wildlife conservation potential: a review. Biol Conserv 21(2):79–109. doi: 10.1016/0006-3207(81)90073-2 CrossRefGoogle Scholar
  47. Meaza G, Cardiñanos JA (2000) Valoración de la vegetación. In: Meaza G (ed) Metodología y prácticade la biogeografía. Edicionesdel Serbal, Barcelona, pp 199–272Google Scholar
  48. Meshesha DT, Tsunekawa A, Tsubo M, Ali SA, Haregeweyn N (2014) Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. 14:757–768Google Scholar
  49. MOP Ministerio de Obras Públicas (1994) Atlas ambiental de Chile, Santiago de ChileGoogle Scholar
  50. Moss C (2008) Patagonia: a cultural history. Signal books, OxfordGoogle Scholar
  51. Munsi M, Malaviya S, Oinam G, Joshi PK (2010) A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. 10: 145–155Google Scholar
  52. Myers N (1995) Environmental unknowns. Science 269(5222):358–360. doi: 10.1126/science.269.5222.358 CrossRefGoogle Scholar
  53. Palomo I, Martin-Lopez B, Zorrilla-Miras P, Garcia Del Amo D, Montes C (2014) Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. 14: 237–251Google Scholar
  54. Pisano E (1990) Labilidad de los ecosistemas terrestres Fuego-patagónicos. An Inst Patagonia 19(1):17–26Google Scholar
  55. Pontius RG, Cornell JD, Hall CAS (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85(1–3):191–203. doi: 10.1016/S0167-8809(01)00183-9 CrossRefGoogle Scholar
  56. Reidsma P, König H, Feng S, Bezlepkina I, Nesheim I, Bonin M, Sghaier M, Purushothaman S, Sieber S, van Ittersum MK, Brouwer F (2011) Methods and tools for integrated assessment of land use policies on sustainable development in developing countries. Land Use Policy 28(3):604–617. doi: 10.1016/j.landusepol.2010.11.009 CrossRefGoogle Scholar
  57. Riitters KH, Wickham JD (2003) How far to the nearest road? Front Ecol Environ 1(3):125–129. doi: 10.1890/1540-9295(2003)001[0125:HFTTNR]2.0.CO;2 CrossRefGoogle Scholar
  58. Robinson J (2004) Squaring the circle? Some thoughts on the idea of sustainable development. Ecol Econ 48(4):369–384. doi: 10.1016/j.ecolecon.2003.10.017 CrossRefGoogle Scholar
  59. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52(10):891. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 CrossRefGoogle Scholar
  60. Schlüter R (2001) The impact of tourism on the patagonian coast, Argentina. Int J Hosp Tour Adm 1(3–4):53–71. doi: 10.1300/J149v01n03_04 Google Scholar
  61. SERNAGEOMIN (2010) Servicio Nacional de Geología y Minería. Accessed 21 Feb 5 Mar 2010
  62. Sistema Nacional de Información Ambiental (SINIA). Accessed 12 Dec 2015
  63. Sukopp H, Hejny S, Kowarik I (eds) (1990) Urban ecology. Plants and plant communities in urban environments. SPA Publishing House Academic Publications, The HagueGoogle Scholar
  64. Theberge JB (1989) Guidelines to drawing ecologically sound boundaries for national parks and nature reserves. Environ Manag 13(6):695–702. doi: 10.1007/BF01868309 CrossRefGoogle Scholar
  65. Tscherning K, König H, Schößer B, Helming K, Sieber S (2008) Ex-ante impact assessments (IA) in the European Commission—an overview. In: Helming K, Pérez-Soba M, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin-Heidelberg, pp 17–33CrossRefGoogle Scholar
  66. Turner BL (1997) The sustainability principle in global agendas: implications for understanding land-use/cover change. Geogr J 163(2):133–140. doi: 10.2307/3060176 CrossRefGoogle Scholar
  67. Ungaro F, Zasada I, Piorr A (2014) Mapping landscape services, spatial synergies and trade-offs. A case study using variogram models and geostatistical simulations in an agrarian landscape in North-East Germany. Ecol Indic 46:367–378. doi: 10.1016/j.ecolind.2014.06.039 CrossRefGoogle Scholar
  68. Verburg PH, van de Steeg J, Veldkamp A, Willemen L (2009) From land cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manage 90(3):1327–351335. doi: 10.1016/j.jenvman.2008.08.005 CrossRefGoogle Scholar
  69. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499. doi: 10.1126/science.277.5325.494 CrossRefGoogle Scholar
  70. Wildlife Conservation Society (WCS) and Center for International Earth Science Information Network (CIESIN) Columbia University (2005). Last of the wild project, version 2, 2005 (LWP-2): last of the wild dataset (Geographic). Palisades, NY: NASA socioeconomic data and applications center (SEDAC). Accessed 08 April 2014
  71. Wilkie D, Shaw E, Rotberg F, Morelli G, Auzel P (2000) Roads, development and conservation in the Congo Basin. Conserv Biol 14:1614–1622CrossRefGoogle Scholar
  72. Wu Q, Li HQ, Wang R-S, Paulussen J, He Y, Wang M, Wang B-H, Wang Z (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc Urban Plan 78(4):322–333. doi: 10.1016/j.landurbplan.2005.10.002 CrossRefGoogle Scholar
  73. Zasada I, Loibl W, Köstl M, Piorr A (2013) Agriculture under urban influence: a spatial analysis of farming systems in the EU. Eur Countrys 5(1):71–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Luis Inostroza
    • 1
    • 2
    Email author
  • Ingo Zasada
    • 3
  • Hannes J. König
    • 3
  1. 1.Institute of Photogrammetry and Remote SensingTechnische Universität DresdenDresdenGermany
  2. 2.Universidad Autónoma de ChileTemucoChile
  3. 3.Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany

Personalised recommendations