Regional Environmental Change

, Volume 16, Issue 8, pp 2199–2214 | Cite as

Fine-grain spatial patterning and dynamics of land use and agrobiodiversity amid global changes in the Bolivian Andes

Original Article

Abstract

Our research addresses the gap in scientific research on the fine-grain spatial patterns and social–ecological interactions of land use and agrobiodiversity. The spatial dimension of agrobiodiversity dynamics potentially strengthens the social–ecological resilience and food security of smallholders by buffering risk and vulnerability. Our research integrates the scientific theories, concepts, and methods of spatial externalities, social–ecological interactions, geospatial land and global change sciences, and political ecology. We designed a case study of the Arbieto-Tarata landscape in the Bolivian Andes that comprises a globally significant agrobiodiversity hot spot of Andean maize. The Arbieto-Tarata landscape, which contains nearly 8000 fields at 2500–2800 masl, is representative of mixed-use smallholder agri-food systems amid global changes. Our research predicts spatial spillover and edge effects of combined social and environmental factors leading to the clustering of same-crop fields. Findings reveal significant levels of the predicted clustering between 2006 and 2012. The degree of this clustering is found to differ among geographic and environmental sub-areas reflecting fine-grain variation of local causal linkages. Extra-local causal linkages include high levels of migration, water resource shortages, and urbanization. Results show the influences of informal and formal coordination in the spatial clustering of same-crop fields. This field-level coordination improves the efficiency of resource allocations and lowers costs of production. It enables the viability of high-agrobiodiversity Andean maize in smallholder land use and agri-food systems amid global changes. The article discusses the broader policy and scientific implications of these findings including scaling up and support of the social–ecological resilience of agrobiodiversity globally.

Keywords

Agrobiodiversity Resilience Spatial externalities Landscape scale Smallholder social–ecological system Bolivian Andes Land use Land cover change Migration Peri-urban 

References

  1. Almekinders CJ, Fresco LO, Struik PC (1995) The need to study and manage variation in agro-ecosystems. NJAS Wag J Life Sci 43:127–142. https://library.wur.nl/ojs/index.php/njas/article/view/572
  2. Anselin L, Rey SJ (eds) (2010) Perspectives on spatial data analysis. Springer, Berlin. doi:10.1007/978-3-642-01976-0_1 Google Scholar
  3. Ávila Lara G (2008) El maíz y su mejoramiento genético en Bolivia. Fundación Simón Patiño, CochabambaGoogle Scholar
  4. Ávila G, Gúzman L (1998) Catálogo de recursos genéticos de maices bolivianos. FONAMA, Cochabamba, BoliviaGoogle Scholar
  5. Baker L, Dove M, Graef D, Keleman A, Kneas D, Osterhoudt S, Stoike J (2013) Whose diversity counts? The politics and paradoxes of modern diversity. Sustain 5:2495–2518. doi:10.3390/su5062495 CrossRefGoogle Scholar
  6. Bebbington A (2001) Globalized Andes? Livelihoods, landscapes and development. Cult Geog 8:414–436. doi:10.1177/096746080100800403 CrossRefGoogle Scholar
  7. Bellon MR (2004) Conceptualizing interventions to support on-farm genetic resource conservation. World Dev 32:159–172. doi:10.1016/j.worlddev.2003.04.007 CrossRefGoogle Scholar
  8. Bellon MR, Risopoulos J (2001) Small-scale farmers expand the benefits of improved maize germplasm: a case study from Chiapas, Mexico. World Dev 29:799–811. doi:10.1016/S0305-750X(01)00013-4 CrossRefGoogle Scholar
  9. Bennett EM, Balvanera P (2007) The future of production systems in a globalized world. Front Ecol Env 5:191–198. doi:10.1890/1540-9295(2007)5[191:TFOPSI]2.0.CO;2 CrossRefGoogle Scholar
  10. Birol E, Smale M, Gyovai Á (2006) Using a choice experiment to estimate farmers’ valuation of agrobiodiversity on Hungarian small farms. Environ Res Econ 34:439–469. doi:10.1007/s10640-006-0009-9 CrossRefGoogle Scholar
  11. Brandolini A (1970) Maize. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. F. A. Davis, Philadelphia, pp 273–309Google Scholar
  12. Brannstrom C, Vadjunec JM (eds) (2014) Land change science, political ecology and sustainability: synergies and divergences. Routledge, LondonGoogle Scholar
  13. Brunckhorst DJ, Reeve I, Morley P, Bock K (2008) Strategic spatial governance: deriving social–ecological frameworks for managing landscapes and regions. Landscape analysis and visualisation. Springer, Berlin, pp 253–275CrossRefGoogle Scholar
  14. Brush SB (2004) Farmers’ bounty: locating crop diversity in the contemporary world. Yale University Press, New HavenCrossRefGoogle Scholar
  15. Brush SB, Perales HR (2007) A maize landscape: ethnicity and agro-biodiversity in Chiapas Mexico. Agri Ecosyst Environ 121:211–221. doi:10.1016/j.agee.2006.12.018 CrossRefGoogle Scholar
  16. Burt JE, Barber GM, Rigby DL (2009) Elementary statistics for geographers. Guilford Press, New YorkGoogle Scholar
  17. Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Nat Acad Sci 96:5952–5959. doi:10.1073/pnas.96.11.5952 CrossRefGoogle Scholar
  18. Chowdhury RR, Turner BL II (2006) Reconciling agency and structure in empirical analysis: smallholder land use in the southern Yucatán, Mexico. Ann Assoc Am Geogr 96:302–322. doi:10.1111/j.1467-8306.2006.00479.x CrossRefGoogle Scholar
  19. Collet C, Schneuwly D, Calo R (2010) Discrete spatial distributions. Geographic Information Technology Training Alliance (GITTA). http://www.gitta.info/DiscrSpatVari/en/text/DiscrSpatVari
  20. Cunningham SA, Attwood SJ, Bawa KS, Benton TG, Broadhurst LM, Didham RK, McIntyre S, Perfecto Samways MJ, Tscharntke T, Vandermeer J, Villard MA, Young AG, Lindenmayer DB (2013) To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agri Ecosyst Environ 173:20–27. doi:10.1016/j.agee.2013.04.007 CrossRefGoogle Scholar
  21. De Boef WS, Thijssen MH, Shrestha P, Subedi A, Feyissa R, Gezu G, Canci A, Ferreira MAJDF, Dias T, Swain S, Sthapit BR (2012) Moving beyond the dilemma: practices that contribute to the on-farm management of agrobiodiversity. J Sust Agri 36:788–809. doi:10.1080/10440046.2012.695329 CrossRefGoogle Scholar
  22. de Haan S (2014) Conservación in-situ: el estado de arte visto desde una mirada del cultivo de la papa. Presentation to the Congreso Nacional de Recursos genéticos de la agrodiversidad (Santa Cruz, Bolivia), 28–29 AugustGoogle Scholar
  23. de Haan S, Núñez J, Bonierbale M, Ghislain M (2010) Multilevel agrobiodiversity and conservation of Andean potatoes in Central Peru: species, morphological, genetic, and spatial diversity. Mount Res Dev 30:222–231. doi:10.1659/MRD-JOURNAL-D-10-00020.1 CrossRefGoogle Scholar
  24. DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2:249–257. doi:10.2307/3868265 CrossRefGoogle Scholar
  25. Dirección de Estadísticas Económicas—Bolivia (2009) Encuesta Nacional Agropecuaria-2008. Instituto Nacional de Estadistica. http://www.ine.gob.bo/anda/index.php/ddibrowser/39. Accessed 5 June 2015
  26. Dove MR (1985) Swidden agriculture in Indonesia: the subsistence strategies of the Kalimantan Kantu’. Mouton, BerlinCrossRefGoogle Scholar
  27. Engels JM, Ebert M, Thormann I, De Vicente MC (2006) Centres of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genet Res Crop Evol 53:1675–1688. doi:10.1007/s10722-005-1215-y CrossRefGoogle Scholar
  28. Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4:80–86. doi:10.1890/1540-9295 CrossRefGoogle Scholar
  29. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342. doi:10.1038/nature10452 CrossRefGoogle Scholar
  30. Fonte SJ, Vanek SJ, Oyarzun P, Parsa S, Quintero DC, Rao IM, Lavelle P (2012) Pathways to agroecological intensification of soil fertility management by smallholder farmers in the Andean Highlands. Adv Agron. doi:10.1016/B978-0-12-394277-7.00004-X Google Scholar
  31. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34. doi:10.1126/science.1234485 CrossRefGoogle Scholar
  32. Gepts P (2006) Plant genetic resources conservation and utilization. Crop Sci 46:2278–2292. doi:10.2135/cropsci2006.03.0169gas CrossRefGoogle Scholar
  33. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383 CrossRefGoogle Scholar
  34. Goodman MM, Stuber CW (1983) Races of maize VI: isozyme variation among races of maize in Bolivia. Maydica 28:169–187Google Scholar
  35. Grobman A (1961) Races of maize in Peru: their origins, evolution and classification. U.S. National Academy of Science, Washington, D.C.Google Scholar
  36. Haller A (2014) The “sowing of concrete”: peri-urban smallholder perceptions of rural–urban land change in the Central Peruvian Andes. Land Use Pol 38:239–247. doi:10.1016/j.landusepol.2013.11.010 CrossRefGoogle Scholar
  37. Harlan JR (1992) Crops and man. American Society of Agronomy, MadisonGoogle Scholar
  38. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, LondonGoogle Scholar
  39. Hijmans RJ, Garrett KA, Huaman Z, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14:1755–1765. doi:10.1111/j.1523-1739.2000.98543.x CrossRefGoogle Scholar
  40. HLPE (2013). Investing in smallholder agriculture for food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome. http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-6_Investing_in_smallholder_agriculture.pdf
  41. INIAF (Instituto Nacional de Innovación Agropecuaria y Forestal) (2013) INIAF fortalece la producción de variedades criollas de maíz en el Valle Alto de Cochabamba. http://www.iniaf.gob.bo/index.php/es/prensa/106-plagas-papa. Accessed 9 Sep 2013
  42. INIAF (Instituto Nacional de Innovación Agropecuaria y Forestal) (2014) Congreso Nacional de Recursos genéticos de la agrodiversidad. http://www.iniaf.gob.bo/index.php/es/2012-09-17-22-45-34/302-i-congreso-nacional-de-recursos-geneticos-de-la-agrobiodiversidad-para-la-seguridad-alimentaria-con-soberania-de-bolivia. Accessed 12 Aug 2014
  43. Irwin EG, Bockstael NE (2002) Interacting agents, spatial externalities and the evolution of residential land use patterns. J Econ Geogr 2(1):31–54. doi:10.1093/jeg/2.1.31 CrossRefGoogle Scholar
  44. Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agri Ecosyst Environ 121:196–210. doi:10.1016/j.agee.2006.12.017 CrossRefGoogle Scholar
  45. Jackson LE, Pulleman MM, Brussaard L, Bawa KS, Brown GG, Cardoso IM, de Ruiter PC, García-Barrios L, Hollander AD, Lavellei P, Ouédraogo E, Pascual U, Setty S, Smukler SM, Tscharntke T, Van Noordwijk M (2012) Social–ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Glob Environ Change 22:623–639. doi:10.1016/j.gloenvcha.2012.05.002 CrossRefGoogle Scholar
  46. Jarvis DI, Brown AH, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Thi-Ngoc Hue N, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Nat Acad Sci 105:5326–5331. doi:10.1073/pnas.0800607105 CrossRefGoogle Scholar
  47. Johns T, Eyzaguirre PB (2006) Linking biodiversity, diet and health in policy and practice. Proc Nutr Soc 65:182–189. doi:10.1079/PNS2006494 CrossRefGoogle Scholar
  48. Johnston RJ, Swallow SK, Bauer DM (2002) Spatial factors and stated preference values for public goods: considerations for rural land use. Land Econ 78:481–500. doi:10.3368/le.78.4.481 CrossRefGoogle Scholar
  49. Jones AD, Shrinivas A, Bezner-Kerr R (2014) Farm production diversity is associated with greater household dietary diversity in Malawi: findings from nationally representative data. Food Policy 46:1–12. doi:10.1016/j.foodpol.2014.02.001 CrossRefGoogle Scholar
  50. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skåness H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269CrossRefGoogle Scholar
  51. Lansing JS (2009) Priests and programmers: technologies of power in the engineered landscape of Bali. Princeton University Press, PrincetonGoogle Scholar
  52. Lerner AM, Rudel TK, Schneider LC, McGroddy M, Burbano DV, Mena CF (2014) The spontaneous emergence of silvo-pastoral landscapes in the Ecuadorian Amazon: patterns and processes. Reg Environ Change. doi:10.1007/s10113-014-0699-4 Google Scholar
  53. Lewis DJ, Barham BL, Zimmerer KS (2008) Spatial externalities in agriculture: empirical analysis, statistical identification, and policy implications. World Dev 36:1813–1829. doi:10.1016/j.worlddev.2007.10.017 CrossRefGoogle Scholar
  54. Lewis DJ, Barham BL, Robinson B (2011) Are there spatial spillovers in the adoption of clean technology? The case of organic dairy farming. Land Econ 87:250–267CrossRefGoogle Scholar
  55. Matchett K (2006) At odds over inbreeding: an abandoned attempt at Mexico/United States collaboration to “improve” Mexican corn, 1940–1950. J Hist Biol 39:345–372. doi:10.1007/s10739-006-0007-3 CrossRefGoogle Scholar
  56. McCord PF, Cox M, Schmitt-Harsh M, Evans T (2015) Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Pol 42:738–750. doi:10.1016/j.landusepol.2014.10.012 CrossRefGoogle Scholar
  57. Momsen JH (2007) Gender and agrobiodiversity: introduction to the special issue. Sing J Trop Geogr 28:1–6. doi:10.1111/j.1467-9493.2006.00272.x CrossRefGoogle Scholar
  58. Ochoa CM (1990) The potatoes of South America: Bolivia. Cambridge University Press, CambridgeGoogle Scholar
  59. Ostrom E (2009) A general framework for analyzing sustainability of social–ecological systems. Science 325:419–422. doi:10.1126/science.1172133 CrossRefGoogle Scholar
  60. Oyarzun PJ, Borja RM, Sherwood S, Parra V (2013) Making sense of agrobiodiversity, diet, and intensification of smallholder family farming in the Highland Andes of Ecuador. Ecol Food Nutr 52:515–541CrossRefGoogle Scholar
  61. Parker DC, Munroe DK (2007) The geography of market failure: edge-effect externalities and the location and production patterns of organic farming. Ecol Econ 60:821–833. doi:10.1016/j.ecolecon.2006.02.002 CrossRefGoogle Scholar
  62. Plieninger T, Bieling C (eds) (2012) Resilience and the cultural landscape: understanding and managing change in human-shaped environments. Cambridge University Press, CambridgeGoogle Scholar
  63. Polreich S, De Haan S, Juárez H, Arce Indacochea A, Plasencia F, Ccanto R, Scurrah M, Begazo Oliviera D (2014) An interdisciplinary monitoring network of diversity hotspots for long-term in situ conservation of potato landraces. Bridging the gap between increasing knowledge and decreasing resources, Tropentag, September 17–19, 2014, Prague, Czech RepublicGoogle Scholar
  64. Postigo JC (2014) Perception and resilience of Andean populations facing climate change. J Ethnobiol 34:383–400. doi:10.2993/0278-0771-34.3.383 CrossRefGoogle Scholar
  65. Postigo JC, Young KR, Crews KA (2008) Change and continuity in a pastoralist community in the high Peruvian Andes. Hum Ecol 36:535–551. doi:10.1007/s10745-008-9186-1 CrossRefGoogle Scholar
  66. Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Phil Trans R Soc B: Biol Sci 363:447–465. doi:10.1098/rstb.2007.2163 CrossRefGoogle Scholar
  67. Producción Estadística (DIMPE)—Colombia (2011) Resultados Encuesta Nacional Agropecuaria ENA. Departamento Dirección de Metodología Administrativo Nacional de Estadística (DANE), Bogota, ColombiaGoogle Scholar
  68. Rámirez E, Timothy DH, Grant U (1960) Races of maize in Bolivia. U.S. National Academy of Science, Washington, D.C.Google Scholar
  69. Reid WV (1998) Biodiversity hotspots. Tre Ecol Evol 13:275–280CrossRefGoogle Scholar
  70. Richards P (2007) How does participation work? deliberation and performance in African food security. IDS Bull 38, pp 21–35. doi:10.1111/j.1759-5436.2005.tb00406.x CrossRefGoogle Scholar
  71. Robbins P (2003) Beyond ground truth: GIS and the environmental knowledge of herders, professional foresters, and other traditional communities. Hu Ecol 31:233–253CrossRefGoogle Scholar
  72. Rojas Vaca HL (2001) Población y territorio: una perspectiva histórica. Editorial Runa, CochabambaGoogle Scholar
  73. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Glob Environ Change 15:23–31CrossRefGoogle Scholar
  74. Rushton G (1969) Analysis of spatial behavior by revealed space preference. Ann Assoc Am Geog 59:391–400CrossRefGoogle Scholar
  75. Sánchez GJJ, Stuber CW, Goodman MM (2000) Isozymatic diversity in the races of maize of the Americas. Maydica 45:185–203Google Scholar
  76. Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Phil Trans R Soc B: Biol Sci 363:477–494CrossRefGoogle Scholar
  77. Schneider LC, Fernando DN (2010) An untidy cover: invasion of bracken fern in the shifting cultivation systems of Southern Yucatán, Mexico. Biotrop 42, pp. 41–48. doi:10.1111/j.1744-7429.2009.00569.x CrossRefGoogle Scholar
  78. Sevilla R (1993) Variation in modern Andean maize and its implications for prehistoric patterns. In: Johannessen S, Hastorf CA (eds) Corn and culture in the prehistoric New World. Westview Press, Boulder, pp 218–244Google Scholar
  79. Sietz D, Lüdeke MK, Walther C (2011) Categorisation of typical vulnerability patterns in global drylands. Glob Environ Change 21:431–440CrossRefGoogle Scholar
  80. Sietz D, Choque SEM, Lüdeke MK (2012) Typical patterns of smallholder vulnerability to weather extremes with regard to food security in the Peruvian Altiplano. Reg Environ Change 12:489–505CrossRefGoogle Scholar
  81. Sistema de Consulta de Cuadros Estadísticos—Peru (2013) IV Censo Nacional Agropecuario 2012. Instituto Nacional de Estadística e Informática. http://censos.inei.gob.pe/cenagro/tabulados. Accessed 30 May 2015
  82. Skarbø K (2014) The cooked is the kept: factors shaping the maintenance of agrobiodiversity in the Andes. Hum Ecol 42:711–726CrossRefGoogle Scholar
  83. Smale M, Bellon MR, Jarvis D, Sthapit B (2004) Economic concepts for designing policies to conserve crop genetic resources on farms. Genet Res Crop Evol 51:121–135CrossRefGoogle Scholar
  84. Snapp SS, Blackie MJ, Gilbert RA, Bezner-Kerr R, Kanyama-Phiri GY (2010) Biodiversity can support a greener revolution in Africa. Proc Nat Acad Sci 107:20840–20845CrossRefGoogle Scholar
  85. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Nat Acad Sci 104:20666–20671CrossRefGoogle Scholar
  86. van Etten J, de Bruin S (2007) Regional and local maize seed exchange and replacement in the western highlands of Guatemala. Pl Genet Res Char Util 5:57–70CrossRefGoogle Scholar
  87. Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, CambridgeGoogle Scholar
  88. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253CrossRefGoogle Scholar
  89. Yarnall K, Price M (2010) Migration, development and a new rurality in the Valle Alto, Bolivia. J Lat Am Geog 9:107–124CrossRefGoogle Scholar
  90. Young KR (2009) Andean land use and biodiversity: humanized landscapes in a time of change. Ann Miss Bot Gar 96:492–507CrossRefGoogle Scholar
  91. Young KR, Aspinall R (2006) Kaleidoscoping landscapes, shifting perspectives. Prof Geog 58:436–447CrossRefGoogle Scholar
  92. Young KR, Lipton JK (2006) Adaptive governance and climate change in the tropical highlands of western South America. Clin Change 78:63–102CrossRefGoogle Scholar
  93. Young OR, Berkhout F, Gallopin GC, Janssen MA, Ostrom E, van der Leeuw S (2006) The globalization of socio-ecological systems: an agenda for scientific research. Glob Environ Change 16:304–316CrossRefGoogle Scholar
  94. Zimmerer KS (1996) Changing fortunes: biodiversity and peasant livelihoods in the Peruvian Andes. University of California Press, BerkeleyGoogle Scholar
  95. Zimmerer KS (1998) The ecogeography of Andean potatoes. Biol Sci 48:445–454. doi:10.2307/1313242 Google Scholar
  96. Zimmerer KS (2001) Report on geography and the new ethnobiology. Geogr Rev 91:725–734. doi:10.1111/j.1931-0846.2001.tb00251.x CrossRefGoogle Scholar
  97. Zimmerer KS (2010) Biological diversity in agriculture and global change. Ann Rev Environ Res 35:137–166CrossRefGoogle Scholar
  98. Zimmerer KS (2013) The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc Nat Acad Sci 110:2769–2774. doi:10.1073/pnas.1216294110 CrossRefGoogle Scholar
  99. Zimmerer KS (2014) Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: the dynamic uses of cultural landscape knowledge. Ecol Soc 19:1. doi:10.5751/ES-06316-190201 CrossRefGoogle Scholar
  100. Zimmerer KS (2015) Understanding agrobiodiversity and the rise of resilience: Analytic category, conceptual boundary object or meta-level transition? Resilience. doi:10.1080/21693293.2015.1072311 Google Scholar
  101. Zimmerer KS, Carney JA, Vanek SJ (2015) Sustainable smallholder intensification in global change? Pivotal spatial interactions, gendered livelihoods, and agrobiodiversity. Curr Op Environ Sust 14:49–60. doi:10.1016/j.cosust.2015.03.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Karl S. Zimmerer
    • 1
    • 2
    • 3
    • 4
  • Hector Luís Rojas Vaca
    • 5
  1. 1.Earth and Environmental Systems Institute (EESI)University ParkUSA
  2. 2.Penn State Institutes for Energy and the Environment (PSIEE)University ParkUSA
  3. 3.GeoSyntheSES Lab (Geographic Syntheses for Social Ecological Sustainability)University ParkUSA
  4. 4.Department of GeographyPennsylvania State UniversityUniversity ParkUSA
  5. 5.Centro de Cultura y Pensamiento (CCP)Universidad Mayor San SimónCochabambaBolivia

Personalised recommendations