Regional Environmental Change

, Volume 17, Issue 6, pp 1639–1650 | Cite as

Climate change impacts in Central Asia and their implications for development

  • Christopher P.O ReyerEmail author
  • Ilona M. Otto
  • Sophie Adams
  • Torsten Albrecht
  • Florent Baarsch
  • Matti Cartsburg
  • Dim Coumou
  • Alexander Eden
  • Eva Ludi
  • Rachel Marcus
  • Matthias Mengel
  • Beatrice Mosello
  • Alexander Robinson
  • Carl-Friedrich Schleussner
  • Olivia Serdeczny
  • Judith Stagl
Original Article


This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Central Asia. Projections show mean temperatures increasing by up to 6.5 °C compared to pre-industrial by the end of this century across the region. Associated physical impacts include altered precipitation regimes, more frequent heat extremes and increasing aridity. Increasing rates of glacial and snow melt could lead to greater river runoff, but also to greater seasonality of runoff in the short term and to decreasing water availability in the medium term to long term. These changes have negative implications for the water availability in the region and for conflicting water demands between agriculture and hydropower. Climate change could mostly decrease crop yields, challenging food security, but in more northern regions there could also be positive effects. Studies on climate change impacts on energy systems are scarce and yield conflicting results, but the more regional study shows decreasing prospects for hydropower. The health of the population is already sensitive to heat extremes and is projected to be exposed to more frequent and prolonged heat waves in the future, among other potential health impacts. While the evidence for a link between climate and migration is weak, the rural-to-urban migration can be especially expected to intensify. The paper concludes that Central Asia will be severely affected by climate change even if the global mean temperature increase is limited to 2 °C above pre-industrial levels, due to the potential for impacts to occur simultaneously and compound one another as well as interactions with wider development challenges, while risks will be strongly amplified if this threshold is crossed.


Development Global change Poverty Projections Scenarios Sustainability 



This research has been funded through the World Bank Project “Turn Down the Heat: Confronting the New Climate Normal,” and we are grateful to everybody involved in this activity for making it a success. Moreover, we would like to thank Wolfgang Cramer, Gabriele Götz and the guest editors for making this Special Feature possible and for their valuable guidance throughout this process.

Supplementary material

10113_2015_893_MOESM1_ESM.pdf (969 kb)
Supplementary material 1 (PDF 969 kb)


  1. Armstrong RL (2010) The glaciers of the Hindu Kush-Himalayan region: a summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir and Tien Shan mountain ranges. International Centre for Integrated Mountain Development (ICIMOD), KathmanduGoogle Scholar
  2. Asian Development Bank (2009) Climate change and migration in Asia and the Pacific. Draft edition. ADB, Mandaluyong City, Manilla, PhilippinesGoogle Scholar
  3. Asian Development Bank (2011) Climate Change and migration in Asia and the Pacific. Draft edition. ADB, Mandaluyong City, Manilla, PhilippinesGoogle Scholar
  4. Asian Development Bank (2012) Addressing Climate Change and Migration in Asia and the Pacific. ADB, Mandaluyong City, PhilippinesGoogle Scholar
  5. Aus der Beek T, Voß F, Flörke M (2011) Modelling the impact of global change on the hydrological system of the Aral Sea basin. Phys Chem Earth, Parts A/B/C 36:684–695. doi: 10.1016/j.pce.2011.03.004 CrossRefGoogle Scholar
  6. Bernauer T, Siegfried T (2012) Climate change and international water conflict in Central Asia. J Peace Res 49:227–239. doi: 10.1177/0022343311425843 CrossRefGoogle Scholar
  7. Bhend J, Whetton P (2013) Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Climatic Change 118:799–810CrossRefGoogle Scholar
  8. Bliss A, Hock R, Radić V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf. doi: 10.1002/2013JF002931 Google Scholar
  9. Bolch T, Peters J, Yegorov A, Pradhan B, Buchroithner M, Blagoveshchensky V (2011) Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat Hazards 59:1691–1714. doi: 10.1007/s11069-011-9860-2 CrossRefGoogle Scholar
  10. Chabot P, Tondel F (2011) A regional view of wheat markets and food security in Central Asia. International Development Famine Early Warning Systems NetworkGoogle Scholar
  11. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin M, Manning Z, Chen M, Marquis KB, Averyt MT, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC AR4 WGI. Cambridge University Press, Cambridge, UK and New York, NYGoogle Scholar
  12. Christmann S, Martius C, Bedoshvili D, Bobojonov I, Carli C, Devkota K, Ibragimov Z, Khalikulov Z, Kienzler K, Manthrithilake H, Mavlyanova R, Mirzabaev A, Nishanov N, Sharma RC, Tashpulatova B, Toderich K, Turdieva M (2009) Food security and climate change in Central Asia and the Caucasus. CGIAR-PFU, ICARDA, TashkentGoogle Scholar
  13. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M, (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: Chapter 12. The physical science basis. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY. p 1033Google Scholar
  14. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:034018CrossRefGoogle Scholar
  15. Cretaux J-F, Letolle R, Bergé-Nguyen M (2013) History of Aral Sea level variability and current scientific debates. Glob Planet Change 110:99–113. doi: 10.1016/j.gloplacha.2013.05.006 CrossRefGoogle Scholar
  16. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  17. Davletkeldiev A, Takenov Z, Iliasov S, Yakimov V (2009) The Kyrgyz Republic’s second national communication to the united nations framework convention on climate change. United Nations Development Programme in Kyrgyz Republic, Bishkek, Kyrgyz RepublicGoogle Scholar
  18. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res-Atmos 118(5):2098–2118CrossRefGoogle Scholar
  19. Drabo A, Mbaye LM (2011) Climate change, natural disasters and migration: an empirical analysis in developing countries. Discussion paper No. 5927, Forschungsinstitut zur Zukunft der Arbeit. Bonn, GermanyGoogle Scholar
  20. Dukhovny VA, de Schutter J (2011) Water in Central Asia—past present and future. CRC Press/Balkema, Taylor & Francis Group, LondonGoogle Scholar
  21. Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim Dyn 41:3283–3300. doi: 10.1007/s00382-013-1743-7 CrossRefGoogle Scholar
  22. Government of the Republic of Tajikistan (2014) Third national communication of the Republic of Tajikistan under the United Nations framework convention on climate change. State Administration for Hydrometeorology Committee on Environmental Protection, DushanbeGoogle Scholar
  23. Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477CrossRefGoogle Scholar
  24. Hagg W, Hoelzle M, Wagner S, Mayr E, Klose Z (2013) Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Glob Planet Change 110:62–73. doi: 10.1016/j.gloplacha.2013.05.005 CrossRefGoogle Scholar
  25. Hamududu B, Killingtveit A (2012) Assessing climate change impacts on global hydropower. Energies 5:305–322. doi: 10.3390/en5020305 CrossRefGoogle Scholar
  26. Hanjra MA, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35:365–377. doi: 10.1016/j.foodpol.2010.05.006 CrossRefGoogle Scholar
  27. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415–E2423CrossRefGoogle Scholar
  28. Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X, Insarov G, Lasco R, Lindgren E, Surjan A (2014) Regional aspects. Chapter 24—Asia. In Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Final draft, IPCC AR5 WGII, Cambridge University Press, Cambridge, UK and New York, NYGoogle Scholar
  29. Jaeger J, Fruehmann J, Gemenne F (2009) Environment and migration scenarios for Ferghana Valley. EACH-FOR environmental change and forced migration scenarios no. 2.2.3Google Scholar
  30. Kazakhstan’s Ministry of Environment Protection (2009) Kazakhstan’s Second National communication to the conference of the parties to the United Nations framework convention on climate change. AstanaGoogle Scholar
  31. Kelly C, Biyalieva C, Dolgikh S, Erokhin S, Fedorenko A, Gareeva A, Garcin Y, Ibraimova A, Iliasov S, Mastre I, Podrezov A, Volovik Y, Uzakbaeva J, Sidorin A (2013) Testing of climate risk assessment methodology in Kyrgyzstan. CAMP Alatoo in collaboration with UNDP Central Asia climate risk management programme. CAMP Alatoo and UNDP, BishkekGoogle Scholar
  32. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119:345–357. doi: 10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  33. Kjellstrom T, McMichael A (2013) Climate change threats to population health and well-being: the imperative of protective solutions that will last. Global Health Action 6:20816CrossRefGoogle Scholar
  34. Kniveton D, Schmidt-Verkerk K, Smith C, Black R (2008) Climate change and migration : improving methodologies to estimate flows. Int Organ Migr Migr Res Ser. 33:68Google Scholar
  35. Kriegel D, Mayer C, Hagg W, Vorogushyn S, Duethmann D, Gafurov A, Farinotti D (2013) Changes in glacierisation, climate and runoff in the second half of the 20th century in the Naryn basin, Central Asia. Glob Planet Change 110:51–61. doi: 10.1016/j.gloplacha.2013.05.014 CrossRefGoogle Scholar
  36. Krysanova V, Dickens C, Timmerman J, Varela-Ortega C, Schlüter M, Roest K, Huntjens P, Jaspers F, Buiteveld H, Moreno E, Pedraza Carrera J, Slámová R, Martínková M, Blanco I, Esteve P, Pringle K, Pahl-Wostl C, Kabat P (2010) Cross-comparison of climate change adaptation strategies across large river basins in Europe, Africa and Asia. Water Resour Manag 24:4121–4160. doi: 10.1007/s11269-010-9650-8 CrossRefGoogle Scholar
  37. Kure S, Jang S, Ohara N, Kavvas ML, Chen ZQ (2013) Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: hydrological response of flow to climate change. Hydrol Process 27:4057–4070CrossRefGoogle Scholar
  38. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502. doi: 10.1890/100125 CrossRefGoogle Scholar
  39. Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73:963–977CrossRefGoogle Scholar
  40. Lioubimtseva E, Henebry GM (2012) Grain Production Trends in Russia, Ukraine, and Kazakhstan: New Opportunities in an Increasingly Unstable World? Front Earth Sci 6(2):157–66CrossRefGoogle Scholar
  41. Lutz W (2010) Emerging population issues in Eastern Europe and Central Asia. Research gaps on demographic trends, human capital and climate change. Eastern Europe and Central Asia Regional Office of the UNFPA, New YorkGoogle Scholar
  42. Lutz AF, Immerzeel WW, Gobiet A, Pellicciotti F, Bierkens MFP (2013) Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrol Earth Syst Sci 17:3661–3677. doi: 10.5194/hess-17-3661-2013 CrossRefGoogle Scholar
  43. Maas A, Briggs C, Cheterian V, Fritzsche K, Lee B, Paskal C, Taenzler D, Carius A (2010) Shifting Bases, shifting perils: a scoping study on security implications of climate change in the OSCE region and beyond. Adelphi Research, Berlin, GermanyGoogle Scholar
  44. Main Administration of Hydrometeorology (2009). Second national communication of the Republic of Uzbekistan under the United Nations framework convention on climate change. Centre of Hydrometeorological Service under the Cabinet of Ministers of the Republic of Uzbekistan, TashkentGoogle Scholar
  45. Mannig B, Müller M, Starke E, Merkenschlager C, Mao W, Zhi X, Podzun R, Jacob D, Paeth H (2013) Dynamical downscaling of climate change in Central Asia. Glob Planet Change 110:26–39. doi: 10.1016/j.gloplacha.2013.05.008 CrossRefGoogle Scholar
  46. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosph 6:1295–1322. doi: 10.5194/tc-6-1295-2012 CrossRefGoogle Scholar
  47. Meyers WH, Ziolkowska JR, Tothova M, Goychuk K (2012) Issues Affecting the Future of Agriculture and Food Security for Europe and Central Asia. Policy Studies on Rural Transition No. 2012-3. FAO, Budapest, HungaryGoogle Scholar
  48. Ministry of Nature Protection (2003) Tajikistan national action plan for climate change mitigation. Main administration on hydrometeorology and environmental pollution monitoring, Ministry for Nature Protection of the Republic Tajikistan, DushanbeGoogle Scholar
  49. Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez JJ, Kaiser LR, Stender YO, Anderson JM, Ambrosino CM, Fernandez-Silva I, Giuseffi LM, Giambelluca TW (2013) The projected timing of climate departure from recent variability. Nature 502:183–187. doi: 10.1038/nature12540 CrossRefGoogle Scholar
  50. Novikov V, Simonett O, Beilstein M, Bournay E, Berthiaume C, Kirby A, Daniel C, Martino L De, Denisov N, Rajabov I, Forster H, Baliev B, Kayumov A, Mustaeva N, Abaikhanova Z, Kuzmichenok V, Myagkov S, Erokhin S, Isabaev K, Reznikova L, Safarov M, Safarov N, Makhmadaliev B (2009) Climate change in Central Asia—a visual synthesis. Swiss Federal Office for the environment (FOEN), Zoï Environment NetworkGoogle Scholar
  51. Ososkova T, Gorelkin N, Chub V (2000) Water resources of Central Asia and adaptation measures for climate change. Environ Monit Assess 61:161–166. doi: 10.1023/A:1006394808699 CrossRefGoogle Scholar
  52. Parry M (2010) Copenhagen number crunch. Nat Rep Clim Change 4:18–19. doi: 10.1038/climate.2010.01 CrossRefGoogle Scholar
  53. Peyrouse S (2013) Food security in Central Asia. A Public policy challenge. Elliott School of International Affairs, George Washington University, Washington DCGoogle Scholar
  54. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2013) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci. doi: 10.1073/pnas.1222473110 Google Scholar
  55. Radić V, Bliss A, Beedlow AC, Hock R, Miles E, Cogley JG (2013) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn 142:37–58. doi: 10.1007/s00382-013-1719-7 Google Scholar
  56. Reuveny R (2007) Climate change-induced migration and violent conflict. Polit Geogr 26:656–673. doi: 10.1016/j.polgeo.2007.05.001 CrossRefGoogle Scholar
  57. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2013) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1222463110 Google Scholar
  58. Schellnhuber HJ, Reyer C, Hare B, Waha K, Otto IM, Serdeczny O, Schaeffer M, Schleußner C-F, Reckien D, Marcus R, Kit O, Eden A, Adams S, Aich V, Albrecht T, Baarsch F, Boit A, Canales Trujillo N, Cartsburg M, Coumou D, Fader M, Hoff H, Jobbins G, Jones L, Krummenauer L, Langerwisch F, Le Masson V, Ludi E, Mengel M, Möhring J, Mosello B, Norton A, Perette M, Pereznieto P, Rammig A, Reinhardt J, Robinson A, Rocha M, Sakschewski B, Schaphoff S, Schewe J, Stagl J, Thonicke K (2014) Turn down the heat: confronting the new climate normal. The World Bank, Washington DCGoogle Scholar
  59. Siegfried T, Bernauer T, Guiennet R, Sellars S, Robertson AW, Mankin J, Bauer-Gottwein P, Yakovlev A (2012) Will climate change exacerbate water stress in Central Asia? Clim Change 112:881–899. doi: 10.1007/s10584-011-0253-z CrossRefGoogle Scholar
  60. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  61. Smith KR, Woodward A, Campbell-Lendrum D, Chadee D, Honda Y, Liu Q, Olwoch J, Revich B, Sauerborn R (2014) Human Health: Impacts, Adaptation, and Co-Benefits. In: Confalonieri U, Haines A (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC AR5 WGII, Cambridge University Press, CambridgeGoogle Scholar
  62. Sommer R, Glazirina M, Yuldashev T, Otarov A, Ibraeva M, Martynova L, Bekenov M, Kholov B, Ibragimov N, Kobilov R, Karaev S, Sultonov M, Khasanova F, Esanbekov M, Mavlyanov D, Isaev S, Abdurahimov S, Ikramov R, Shezdyukova L, de Pauw E (2013) Impact of climate change on wheat productivity in Central Asia. Agric Ecosyst Environ 178:78–99. doi: 10.1016/j.agee.2013.06.011 CrossRefGoogle Scholar
  63. Sorg A, Huss M, Rohrer M, Stoffel M (2014) The days of plenty might soon be over in glacierized Central Asian catchments. Environ Res Lett 9:104018. doi: 10.1088/1748-9326/9/10/104018 CrossRefGoogle Scholar
  64. Sulaimanova S (2004) Migration trends in Central Asia and the case of trafficking of women. In: Burghart D, Sabonis-Helf T (eds) In the tracks of tamerlane. Central Asia’s path to the 21st century. INSS CTNSP, Washington D.CGoogle Scholar
  65. Sutton W, Srivastava J, Neumann J (2013a) Looking beyond the horizon. How climate change impacts and adaptation responses will reshape agriculture in Eastern Europe and Central Asia. World Bank, Washington, D.CGoogle Scholar
  66. Sutton W, Srivastava J, Neumann J, Droogers P, Boehlert B (2013b) Reducing the vulnerability of Uzbekistan’s agricultural systems to climate change. Impact assessment and adaptation options. World Bank, Washington D.CGoogle Scholar
  67. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215. doi: 10.1016/j.agrformet.2011.09.002 CrossRefGoogle Scholar
  68. Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127. doi: 10.1016/j.agsy.2009.05.002 CrossRefGoogle Scholar
  69. UNESCAP (2012) Compendium on water-related hazards and extreme weather events in Central Asia and neighbouring countries. United Nations Economic and Social Commission for Asia and the Pacific. 95Google Scholar
  70. Unger-Shayesteh K, Vorogushyn S, Farinotti D, Gafurov A, Duethmann D, Mandychev A, Merz B (2013) What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob Planet Change 110:4–25. doi: 10.1016/j.gloplacha.2013.02.004 CrossRefGoogle Scholar
  71. Weinthal E (2006) Water conflict and cooperation in Central Asia. UNDP Human Development Report Office: occasional paper: 36Google Scholar
  72. World Bank (2012) Tajikistan’s winter energy crisis: electricity supply and demand alternatives. In: Fields D, Kochnakyan A, Stuggins G, and Besant-Jones J (eds) The World Bank, Washington DCGoogle Scholar
  73. World Bank (2013a) Uzbekistan—overview of climate change activities. World Bank, Washington DCGoogle Scholar
  74. World Bank (2013b) Tajikistan—overview of climate change activities. World Bank, Washington DCGoogle Scholar
  75. World Bank (2014a) Population dynamics. In: World development indicators. Accessed 05 Jan 2014
  76. World Bank (2014b) Urban poverty headcount ratio at national poverty lines (% of urban population). In: World development indicators. Accessed on 15 Jan 2015
  77. World Bank (2014c) Poverty and equity regional dashboard for Europe and Central Asia. Accessed on 15 Jan 2015
  78. World Bank and IMF (2013) Global monitoring report 2013: rural-urban dynamics and the millennium development goals. World Bank and the International Monetary Fund, Washington DC. doi: 10.1596/978-0-8213-9806-7 CrossRefGoogle Scholar
  79. WorleyParsons (2012) Climate vulnerability, risk and adaptation assessments—helping countries prepare an effective power sector response: focus on Turkmenistan. International Fund for Saving the Aral Sea (IFAS), Tashkent, Uzbekistan. 1–406Google Scholar
  80. Zhang H, Ouyang Z, Zheng H, Wang X (2009) Recent climate trends on the northern slopes of the Tianshan mountains, Xinjiang, China. J Mt Sci 6:255–265. doi: 10.1007/s11629-009-0236-y CrossRefGoogle Scholar

Copyright information

© International Bank for Reconstruction and Development/The World Bank 2015

Authors and Affiliations

  • Christopher P.O Reyer
    • 1
    Email author
  • Ilona M. Otto
    • 1
    • 2
  • Sophie Adams
    • 3
    • 4
  • Torsten Albrecht
    • 1
  • Florent Baarsch
    • 3
  • Matti Cartsburg
    • 5
  • Dim Coumou
    • 1
  • Alexander Eden
    • 1
  • Eva Ludi
    • 6
  • Rachel Marcus
    • 6
  • Matthias Mengel
    • 1
    • 3
  • Beatrice Mosello
    • 6
  • Alexander Robinson
    • 1
    • 7
    • 8
  • Carl-Friedrich Schleussner
    • 1
    • 3
  • Olivia Serdeczny
    • 3
  • Judith Stagl
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.School of Public AffairsZhejiang UniversityHangzhouChina
  3. 3.Climate AnalyticsBerlinGermany
  4. 4.University of New South WalesKensingtonAustralia
  5. 5.Agripol - Network for Policy Advice GbRBerlinGermany
  6. 6.Overseas Development InstituteLondonUK
  7. 7.Universidad Complutense de MadridMadridSpain
  8. 8.Instituto de GeocienciasUCM-CSICMadridSpain

Personalised recommendations