Regional Environmental Change

, Volume 16, Issue 5, pp 1507–1520 | Cite as

Patterns and changes of land use and land-use efficiency in Africa 1980–2005: an analysis based on the human appropriation of net primary production framework

  • Tamara FetzelEmail author
  • Maria Niedertscheider
  • Helmut Haberl
  • Fridolin Krausmann
  • Karl-Heinz Erb
Original Article


African land systems play a decisive role in addressing future sustainability challenges for food and energy supply—in Africa and potentially elsewhere. Knowledge on the magnitude and efficiency of current land use and its socio-economic frame conditions is scarce but required to provide an appropriate basis for estimating production potentials and efficiency improvements. We apply the human appropriation of net primary production (HANPP) framework to analyze African land systems and their dynamics between 1980 and 2005. HANPP measures human-induced changes in ecological biomass flows and allows analyzing the efficiency with which humans use the natural resource NPP (Net Primary Production). In 2005, African HANPP amounts to 20 %, which is below the global average of 23 %, and has grown significantly (+55 %) since 1980. HANPP efficiency (i.e., the ratio of used biomass extraction to total HANPP) is low (35 %) in contrast to the global average of 48 %. Large regional variations (ranging from 18 % in Central Africa to >100 % in Northern Africa) and only small improvements of +11 % on average have been observed. In the study period, the growth of HANPP has been mostly driven by land-use expansion. We conclude that the observed low HANPP efficiency in Africa suggests that there may be potentials for improving the efficiency of biomass production on existing land-uses rather than increasing output trough further land expansion. We discuss policy implications that could help better utilizing existing potentials to increase land-use efficiency in a sustainable manner.


Africa HANPP Land-use change Land-use efficiency HANPP efficiency Biomass 



We thank the two anonymous reviewers for their constructive comments and suggestions that significantly improved the manuscript. The authors gratefully acknowledge funding by UNCTAD in the context of the Report ‘Economic development in Africa. Report 2012. Structural transformation and sustainable development in Africa’, as well as funding from the Austrian Science Fund (FWF) project P20812-G11, and from the ERC Starting Grant 2010 263522 (LUISE). The research contributes to the Global Land Project (

Supplementary material

10113_2015_891_MOESM1_ESM.docx (329 kb)
Supplementary material 1 (DOCX 329 kb)


  1. Abdi AM, Seaquist J, Tenenbaum DE, Eklundh L, Ardö J (2014) The supply and demand of net primary production in the Sahel. Environ Res Lett. doi: 10.1088/1748-9326/9/9/094003 Google Scholar
  2. Block S (2011) The decline and rise of agricultural productivity in sub-Saharan Africa since 1961. Working paper 16481. Cambridge. Accessed 01.2014
  3. Chamberlin A, Jayne TS, Headey D (2014) Scarcity amid abundance? Reassessing the potential for cropland expansion in Africa. Food Policy 48:51–65CrossRefGoogle Scholar
  4. Charles H, Godfray J (2011) Food for thought. PNAS 50(108):19845–19846Google Scholar
  5. Cotula L, Vermeulen S, Leonard R, Keeley J (2009) Land grab or development opportunity? Agricultural investment and international land deals in Africa. IIED, FAO, IFAD, London, RomeGoogle Scholar
  6. Deininger K, Byerlee D, Lindsay J, Norton A, Selod H, Stickler M (2011) Rising global interest in farmland. Can it yield sustainable and equitable benefits? Agriculture and rural development, vol 214. Worldbank Publications, WashingtonCrossRefGoogle Scholar
  7. Diagana B (2003) Land degradation in sub-Saharan Africa: What explains the widespread adoption of unsustainable farming practices? Draft working paper, Department of Agricultural Economics and Economics, Montana State University. Accessed 12.2011
  8. Erb KH, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2(3):191–224CrossRefGoogle Scholar
  9. Erb KH, Krausmann F, Gaube V, Gingrich S, Bondeau A, Fischer-Kowalski M, Haberl H (2009) Analysing the global human appropriation of net primary production—processes, trajectories, implications. An introduction. Ecol Econ 69:250–259CrossRefGoogle Scholar
  10. Erb KH, Haberl H, Jepsen MR, Kuemmerle T, Lindner M, Müller D et al (2013) A conceptual framework for analysing and measuring land-use intensity. Curr Opin Environ Sustain 5(5):464–470. doi: 10.1016/j.cosust.2013.07.010 CrossRefGoogle Scholar
  11. FAO (2011) FAOSTAT. FAO statistical databases & data-sets. Rome. Accessed 10.2011
  12. FAO and IIASA (2000) Global agro-ecological zones—GAEZ, 2000. Food and Agriculture Organization of the United Nations (FAO), Institute of Applied Systems Analysis (IIASA), Rome & LaxenburgGoogle Scholar
  13. FAO and WFP (2010) The state of food insecurity in the world: addressing food insecurity in protracted crises. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  14. Fetzel T, Gradwohl M, Erb K (2014) Conversion, intensification, and abandonment: a human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecol Econ 97:201–208. doi: 10.1016/j.ecolecon.2013.12.002 CrossRefGoogle Scholar
  15. Friis C, Reenberg A (2010) Land grab in Africa: emerging land system drivers in a teleconnected world. GLP report no 1. GLLP-IPO, CopenhagenGoogle Scholar
  16. Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec. 2(3):197–214. doi: 10.1007/s12571-010-0070-7 CrossRefGoogle Scholar
  17. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270CrossRefGoogle Scholar
  18. Gibbs H (2006) Olson’s major world ecosystem complexes ranked by carbon in live vegetation: an updated database using the GLC2000 land cover product. Accessed 10.2013
  19. Goldewijk KK, Beusen A, Janssen P (2010) Long term dynamic modeling of global population and built-up area in a spatially explicit way, HYDE 3.1. Holocene 20(4):565–573. doi: 10.1177/0959683609356587 CrossRefGoogle Scholar
  20. Haberl H, Erb KH, Krausmann F, Gaube V, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007a) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104(31):12942–12947CrossRefGoogle Scholar
  21. Haberl H, Erb KH, Plutzar C, Fischer-Kowalski M, Krausmann F (2007b) Human Appropriation of New Primary Production (HANPP) as an indicator for pressures on biodiversity. In: Hák T (ed) Sustainability Indicators. A scientific assessment. SCOPE, vol 67. Island Press, WashingtonGoogle Scholar
  22. Haberl H, Erb KH, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391CrossRefGoogle Scholar
  23. Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM (2008) Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc Lond B Biol Sci 363(1492):611–621CrossRefGoogle Scholar
  24. Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, Van de Steeg J, Lynam J, Rao PP, Macmillan S, Gerard B, McDermott J, Seré C, Rosegrant M (2010) Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327:822–825CrossRefGoogle Scholar
  25. IAASTD (2009) Agriculture at a crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), Global report. Island Press, WashingtonGoogle Scholar
  26. Jayne T, Mather D, Mghenyi E (2010) Principal challenges confronting smallholder agriculture in sub-Saharan Africa. World Dev 38(10):1384–1398. doi: 10.1016/j.worlddev.2010.06.002 CrossRefGoogle Scholar
  27. Jayne TS, Chamberlin J, Headey DD (2014) Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis. Food Policy 48:1–17CrossRefGoogle Scholar
  28. Kastner T (2007) Human appropriation of net primary production (HANPP) in the Philippines 1910–2003: a socio-ecological analysis. Master Thesis, University of Klagenfurt, Institute of Social Ecology, ViennaGoogle Scholar
  29. Kohlheb N, Krausmann F (2009) Land use change, biomass production and HANPP: the case of Hungary 1961–2005. Ecol Econ 69:292–300CrossRefGoogle Scholar
  30. Krausmann F, Erb KH, Gingrich S, Lauk C (2008) Haberl H (2008) Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471–487CrossRefGoogle Scholar
  31. Krausmann F, Gingrich S, Haberl H, Erb KH, Musel A, Kastner T et al (2012) Long-term trajectories of the human appropriation of net primary production: lessons from six national case studies. Ecol Econ 77:129–138CrossRefGoogle Scholar
  32. Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci 110(25):10324–10329. doi: 10.1073/pnas.1211349110 CrossRefGoogle Scholar
  33. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1626CrossRefGoogle Scholar
  34. Lal R (2008) Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag 28:747–758CrossRefGoogle Scholar
  35. Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P, Morton DC, Rudel TK, Gasparri I, Munger J (2013) Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Change 23(892):901Google Scholar
  36. Lauk C, Erb KH (2009) Biomass consumed in anthropogenic vegetation fires. Global patterns and processes. Ecol Econ 69(2):301–309CrossRefGoogle Scholar
  37. Licker R, Johnston M, Foley JA, Barford C, Kucharik CJ, Monfreda C, Ramankutty N (2010) Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob Ecol Biogeogr 19(6):769–782. doi: 10.1111/j.1466-8238.2010.00563.x CrossRefGoogle Scholar
  38. Mackey B (2008) Green carbon. The role of natural forest in carbon storage. ANU E Press, ActonGoogle Scholar
  39. Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014a) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi: 10.1016/j.cosust.2013.09.002 CrossRefGoogle Scholar
  40. Mbow C, Van Noordwijk M, Luedeling E, Neufeldt H, Minang PA, Kowero G (2014b) Agroforestry solutions to address food security and climate change in Africa. Curr Opin Environ Sustain 6:61–67CrossRefGoogle Scholar
  41. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, WashingtonGoogle Scholar
  42. Mueller N, Gerber J, Johnston M, Ray D, Ramankutty N, Foley J (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257CrossRefGoogle Scholar
  43. Musel A (2008) Human appropriation of net primary production (HANPP) in the United Kingdom, 1800–2000: a socio-ecological analysis. Master Thesis, University of KlagenfurtGoogle Scholar
  44. Niedertscheider M, Gingrich S, Erb KH (2012) Changes in land use in South Africa between 1961 and 2006: an integrated socio-ecological analysis based on the human appropriation of net primary production framework. Reg Environ Change 12:715–727CrossRefGoogle Scholar
  45. Niedertscheider M, Kümmerle T, Müller D, Erb KH (2014) Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob Environ Change 28:98–108CrossRefGoogle Scholar
  46. Nin-Pratt A, Johnson M, Magalhaes E, You L, Diao X, Chamberlin J (2011) Yield gaps and potential agricultural growth in West and Central Africa. IFPRI. Accessed 01.2014
  47. Oldeman LR, Hakkeling RTA, Sombroeck WG (1991) Global Assessment of Soil Degradation (GLASOD). World map of the status of human–induced soil degradation. ISRIC WageningenGoogle Scholar
  48. Ramankutty N, Foley J, Norman J, McSweeney K (2002) The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob Ecol Biogeogr 11:377–392CrossRefGoogle Scholar
  49. Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8(4):44041. doi: 10.1088/1748-9326/8/4/044041 CrossRefGoogle Scholar
  50. Rulli MC, Saviori A, D’Odorico P (2013) Global land and water grabbing. PNAS 110(3):892–897CrossRefGoogle Scholar
  51. Running S (2014) A regional look at HANPP: human consumption is increasing, NPP is not. Environ Res Lett. doi: 10.1088/1748-9326/9/11/111003 Google Scholar
  52. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108(24):9899–9904. doi: 10.1073/pnas.1019576108 CrossRefGoogle Scholar
  53. Sánchez PA (2010) Tripling crop yields in tropical Africa. Nat Geosci 2010(3):299–300CrossRefGoogle Scholar
  54. Searchinger T, Estes L, Thornton PK, Beringer T, Notenbaert A, Rubenstein D, Heimlich R, Licker R, Herrero M (2015) High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat Clim Change 5:481–486. doi: 10.1038/NCLIMATE2584 CrossRefGoogle Scholar
  55. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232CrossRefGoogle Scholar
  56. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185CrossRefGoogle Scholar
  57. Sonneveld BG, Dent DL (2009) How good is GLASOD? J Environ Manage 90:274–283. doi: 10.1016/j.jenvman.2007.09.008 CrossRefGoogle Scholar
  58. Tittonell P, Giller KE (2013) When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crop Research 143:76–90CrossRefGoogle Scholar
  59. Tittonell P, Vanlauwe B, De Ridder N, Giller K (2007) Nutrient use efficienciies and crop responses to N, P, and manure application in Zimbabwean soils: exploring management strategies across soil fertility gradients. Field Crop Res 100:348–368CrossRefGoogle Scholar
  60. Tüxen R (1956) Angewandte Pflanzensoziologie. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. C.V. Engelhard & Co G.m.b.H. Hannover, Stolzenau/WeserGoogle Scholar
  61. UN (2013) Composition of macro-geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. Geographical region and composition. Accessed 10.2013
  62. UNCTAD (2012) Economic development in Africa report 2012. Structural transformation and sustainable development in Africa. Economic development in Africa, vol 2012. United Nations, New YorkGoogle Scholar
  63. Van der Velde M, Folberth C, Balkovic J, Ciais P, Fritz S, Janssens IA, Obersteiner M, See L, Skalsky R, Xiong W, Penuelas J (2014) African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Glob Change Biol 20:1278–1288. doi: 10.1111/gcb.12481 CrossRefGoogle Scholar
  64. Vanlauwe B, Wendt J, Giller KE, Corbeels M, Gerard B, Nolte C (2014) A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Res 155:10–13CrossRefGoogle Scholar
  65. Vitousek P, Ehrlich P, Ehrlich A, Matson P (1986) Human appropriation of the products of photosynthesis. Bioscience 36:363–373CrossRefGoogle Scholar
  66. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513CrossRefGoogle Scholar
  67. WHO and FAO (2003) Diet, nutrition, and the prevention of chronic diseases. Report of a WHO-FAO expert consultation. Joint WHO-FAO expert consultation on diet, nutrition, and the prevention of chronic diseases, 2002, Geneva, Switzerland. World Health Organization, Geneva. WHO technical report series, 916Google Scholar
  68. Wirsenius S (2000) Human use of land and organic materials. Modeling the turnover of biomass in the global food system. Dissertation, Goteborg, Sweden, Department of Physical Resource Theory, Chalmers University of TechnologyGoogle Scholar
  69. Wright DH (1990) Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio 4(19):189–194Google Scholar
  70. Young A (1999) Is there really spare land? A critique of estimates of available cultivable land in developing countries. Environ Dev Sustain 1:3–18CrossRefGoogle Scholar
  71. Zika M, Erb KH (2009) The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol Econ 69(2):310–318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tamara Fetzel
    • 1
    Email author
  • Maria Niedertscheider
    • 1
  • Helmut Haberl
    • 1
    • 2
  • Fridolin Krausmann
    • 1
  • Karl-Heinz Erb
    • 1
  1. 1.Institute of Social Ecology ViennaAlpen-Adria Universitaet Klagenfurt, Wien, GrazViennaAustria
  2. 2.Integrative Research Institute on Transformations in Human Environment SystemsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations