Skip to main content

Future climate of the Carpathians: climate change hot-spots and implications for ecosystems

Abstract

The Carpathians are the largest European mountain range and harbour exceptional biodiversity. However, recent and anticipated changes in climate along with rapid social and economic development suggest that the region’s values may not be sustained. We strived to identify the main regional climate change hot-spots and evaluate the distribution of climatically exposed land-use types and ecosystems. The analysis was based on 10 climate models driven by the emission scenario A1B. To identify the hot-spots, we adopted a methodology based on change trajectories in a multidimensional climate space. Three hot-spots were in the Western Carpathians (Czech Republic, Slovakia, and Hungary), two were in Ukraine, and three were in the Romanian and Serbian Carpathians. Regions with the highest aggregate climate exposure (i.e. above 70 % of the regional range) were mostly covered by broadleaved forests (39 %), agricultural land (30 %), and pastures and woodlands (15 %). These regions also contained 15 % of protected areas and 36 % of the total human population in the Carpathians. While growing season length was the main factor affecting hot-spot magnitude in the north-west, precipitation-related variables were the main factors in the east and south. Analysis of inter-climate model variability indicated that the level of confidence in hot-spot position and magnitude differed among hot-spots. In addition to identifying a large-scale regional pattern of climate change, we showed that there are sub-regions with remarkably high climate exposure. The hot-spot distribution in lower elevations suggests that Carpathian ecosystems in water-limited environment may be particularly exposed to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Baettig MB, Wild M, Imboden DM (2007) A climate change index: where climate change may be most prominent in the 21st century. Geophys Res Lett 34(1):L01705. doi:10.1029/2006GL028159

    Google Scholar 

  • Barnett J, Lambert S, Fry I (2008) The hazards of indicators: insights from the Environmental Vulnerability Index. Ann Assoc Am Geogr 98(1):102–119. doi:10.1080/00045600701734315

    Article  Google Scholar 

  • Bartholy J, Pongrácz R, Hollósi B (2013) Analysis of projected drought hazards for Hungary. Adv Geosci 35:61–66. doi:10.5194/adgeo-35-61-2013

    Article  Google Scholar 

  • Belda M, Skalák P, Farda A, Halenka T, Déqué M, Csima G, Bartholy J, Torma C, Boroneant C, Caian M, Spiridonov V (2015) CECILIA regional climate simulations for future climate: analysis of climate change signal. Adv Meteorol. doi:10.1155/2015/354727

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Weber H, Neuhäuslová Z, Raus T, Schlüter H (2004) Karte der natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe, Maßstab/Scale 1:2.500.000, Interaktive/Interactive CD-ROM Erläuterungstext, Legende, Karten / Explanatory Text, Legend, Maps. Landwirtschaftsverlag, Münster

  • Briner S, Elkin C, Huber R (2013) Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J Environ Manage 129:414–422. doi:10.1016/j.jenvman.2013.07.018

    Article  Google Scholar 

  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J For Res 131(1):145–157. doi:10.1007/s10342-011-0513-5

    Article  Google Scholar 

  • Chester CC (2006) Conservation across borders: biodiversity in an interdependent World. Island Press, Washington

    Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  • Chytrý M (2007) TH Festuco-Brometea Br.-Bl. et Tüxen ex Soó 1947. In: Chytrý M (ed) Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation. Academia, Prague, pp 372–376

  • Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2012) Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Chang 3:63–67. doi:10.1038/nclimate1634

    Article  Google Scholar 

  • de Sherbinin A (2014) Climate change hotspots mapping: what have we learned? Clim Chang 123(1):23–37. doi:10.1007/s10584-013-0900-7

    Article  Google Scholar 

  • Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Chang 114:813–822. doi:10.1007/s10584-012-0570-x

    Article  Google Scholar 

  • Diffenbaugh NS, Giorgi F, Pal JS (2008) Climate change hotspots in the United States. Geophys Res Lett 35:L16709. doi:10.1029/2008GL035075

    Article  Google Scholar 

  • Dobor L, Barcza Z, Hlásny T, Havasi Á, Horváth F, Ittzés P, Bartholy J (2015) Bridging the gap between climate models and impact studies: the FORESEE Database. Geosci Data J 2:1–11. doi:10.1002/gdj3.22

    Article  Google Scholar 

  • Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116:D16106. doi:10.1029/2011JD015934

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Amer Meteor Soc 81:417–425. doi:10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2

    Article  Google Scholar 

  • EEA (2006) The thematic accuracy of Corine Land Cover 2000. Assessment Using LUCAS (Land Use/Cover Frame Statistical Survey), Technical report No 7/2006. European Environmental Agency, Copenhagen. http://www.eea.europa.eu/publications/ technical_report_2006_7. Accessed 8 February 2015

  • Ericksen PJ, Thornton PK, Notenbaert AMO, Cramer L, Jones P, Herrero M (2011) Mapping hotspots of climate change and food insecurity in the global tropics. CCAFS Report no. 5, Copenhagen, Denmark

  • Farda A, Déqué M, Somot S, Horányi A, Spiridonov V, Tóth H (2010) Model ALADIN as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54:313–332. doi:10.1007/s11200-010-0017-7

    Article  Google Scholar 

  • Fischer G, Shah M, Tubiello FN, van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Phil Trans R Soc B 360:2067–2073. doi:10.1098/rstb.2005.1744

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukaine M (2013) Evaluation of climate models. In: Stocker TF et al. (ed) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 741–882

  • Freudenberg M (2003) Composite indicators of country performance: a critical assessment, Pap. DSTI / DOC (2003) 16, p 34, Organ. for Econo. Coop. and Dev., Paris

  • Gallego FJ (2010) A population density grid of the European Union. Popul Environ 31(6):460–473. doi:10.1007/s11111-010-0108-y

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Google Scholar 

  • Grêt-Regamey A, Brunner SH, Kienast F (2012) Mountain ecosystems services: who cares? Mt Res Dev 32:23–34. doi:10.1659/MRD-JOURNAL-D-10-00115.S1

    Article  Google Scholar 

  • Grodzińska K, Godzik B, Fraczek W, Badea O, Oszlányi J, Postelnicu D, Shparyk Y (2004) Vegetation of the selected forest stands and land use in the Carpathian Mountains. Environ Pollut 130(1):17–32. doi:10.1016/j.envpol.2003.10.031

    Article  Google Scholar 

  • Grothmann T, Patt A (2005) Adaptive capacity and human cognition: the process of individual adaptation to climate change. Glob Environ Chang 15(3):199–213. doi:10.1016/j.gloenvcha.2005.01.002

    Article  Google Scholar 

  • Gu H, Yu Z, Wang J, Ju Q, Yang C, Fan C (2014) Climate change hotspots identification in China through the CMIP5 global climate model ensemble. Adv Meteorol. doi:10.1155/2014/963196

    Google Scholar 

  • Gurung AB, Bokwa A, Chełmicki W, Elbakidze M, Hirschmug M, Hostert P, Ibisch P, Kozak J, Kuemmerle T, Matei E, Ostapowicz K, Pociask-Karteczka J, Schmidt L, van der Linden S, Zebisch M (2009) Global change research in the Carpathian mountain region. Mt Res Dev 29(3):282–288. doi:10.1659/mrd.1105

    Article  Google Scholar 

  • Hagenlocher M, Lang S, Hölbling D, Tiede D, Kienberger S (2014) Modeling hotspots of climate change in the Sahel using object—based regionalization of multi-dimensional gridded datasets. IEEE J STARS 7(1):229–234. doi:10.1109/JSTARS.2013.2259579

    Google Scholar 

  • Hawkins E, Sutton RT (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:1–2. doi:10.1007/s00382-010-0810-6

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hlásny T, Sitková Z (2010) Spruce forests decline in the Beskids. National Forest Centre—Forest Research Institute Zvolen, Czech University of Life Sciences Prague, Forestry and Game Management Research Institute Jíloviště—Strnady, Zvolen, Slovakia

  • Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J, Dobor L, Barcza Z, Konôpka B (2014) Climate change increases the drought risk in Central European forests: what are the options for adaptation? Lesn Cas For J 60:5–18. doi:10.2478/forj-2014-0001

    Google Scholar 

  • Hudson G, Wackernagel H (1994) Mapping temperature using kriging with external drift: theory and example from Scotland. Int J Climatol 14:77–91. doi:10.1002/joc.3370140107

    Article  Google Scholar 

  • Janišová M, Hájková P, Hegedüšová K, Hrivnák R, Kliment J, Michálková D, Ružičková H, Řezníčková M, Tichý L, Škodová I, Uhliarová E, Ujházy K, Zaliberová M (2007) Grassland vegetation of Slovakia—electronic expert system for syntaxa identification. Botanical Institute of the SAS, Bratislava

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org. Accessed 25 February 2015

  • Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24(12):694–701. doi:10.1016/j.tree.2009.06.007

    Article  Google Scholar 

  • KEO (2007) Carpathians environment outlook. United Nations Environment Programme Division of Early Warning and Assessment Europe, Genava

    Google Scholar 

  • Knorn J, Kuemmerle T, Radeloff VC, Szabo A, Mindrescu M, Keeton WS, Abrudan I, Griffiths P, Gancz V, Hostert P (2012) Forest restitution and protected area effectiveness in post-socialist Romania. Biol Conserv 146:204–212. doi:10.1016/j.biocon.2011.12.020

    Article  Google Scholar 

  • Kondracki J (1989) Karpaty. Ed.2 (updated). Wydawnictwa Szkolne i Pedagogiczne, Warsaw

  • Kuemmerle T, Perzanowski K, Chaskovskyy O, Ostapowicz K, Halada L, Bashta AT, Kruhlov I, Hostert P, Waller DM, Radeloff VC (2010) European bison habitat in the Carpathian mountains. Biol Conserv 143(4):908–916. doi:10.1016/j.biocon.2009.12.038

    Article  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990. doi:10.1038/nature06777

    CAS  Article  Google Scholar 

  • Lakatos F, Molnár M (2009) Mass mortality of beech in South-West Hungary. Acta Silv Lign Hung 5:75–82

    Google Scholar 

  • Martazinova V, Ivanova O, Shandra O (2011) Climate and treeline dynamics in the Ukrainian Carpathian Mts. Folia Oecol 38:65–71

    Google Scholar 

  • Marušák R, Kašpar J (2015) Spatially-constrained harvest scheduling with respect to environmental requirements and silvicultural system. Lesn Cas For J 61(2):71–77. doi:10.1515/forj-2015-0015

    Google Scholar 

  • Mátyás C (2010) Forecasts needed for retreating forests. Nat Opin 464:1271. doi:10.1038/4641271a

    Article  Google Scholar 

  • Mátyás C, Sun G (2014) Forests in a water limited world under climate change. Environ Res Lett 9(8):085001. doi:10.1088/1748-9326/9/8/085001

    Article  Google Scholar 

  • Mátyás C, Berki I, Czúcz B, Gálos B, Móricz N, Rasztovits E (2010) Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silv Lign Hung 6:91–110

    Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367(9513):859–869

    Article  Google Scholar 

  • Merganičová K, Merganič J, Hlásny T, Socha J, Deák G, Pavelko A, Mátyás C, Trentea A, Iosif A, Nicolescu A, Bodea A, Musat C, Radu M, Popa I, Rasztovits E, Trombik J (2013) Report on forest management practices applied in the Carpathians and their potential to adapt the forests to the forthcoming climate change or on their detrimental effect. CarpathCC Climate Change Framework Project, FORIM, Slovakia

    Google Scholar 

  • Micu DM, Dumitrescu A, Cheval S, Birsan MV (2015) Climate of the Romanian Carpathians. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Midgley SJE, Davies RAG, Chesterman S (2011) Climate Risk and Vulnerability Mapping: Status quo (2008) and future (2050). Report produced for UK Department for International Development (DFID)

  • Mihai B, Savulescu I, Sandric I (2007) Change detection analysis (1986–2002) of vegetation cover in Romania. Mt Res Dev 27(3):250–258. doi:10.1659/mred.0645

    Article  Google Scholar 

  • Mitchell T, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre. Working Paper 55

  • Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188

    CAS  Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres B, Forsythe N, Fowler H, Greenword G, Hashmi MZ, Liu XD, Miller JD, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedoanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  • Piontek F, Müller C, Pugh TAM, Clark DB, Deryng D, Elliott J, González FJC, Flörke M, Folberth C, Franssen W, Frieler K, Friend AD, Gosling SN, Hemming D, Khabarov N, Kim H, Lomas MR, Masaki Y, Mengel M, Morse A, Neumann K, Nishina K, Ostberg S, Pavlick R, Ruane AC, Schewe J, Schmid E, Stacke T, Tang Q, Tessler ZD, Tompkins AM, Warszawski L, Wisser D, Schellnhuber HJ (2014) Multisectoral climate impact hotspots in a warming world. Proc Natl Acad Sci 111(9):3233–3238. doi:10.1073/pnas.1222471110

    CAS  Article  Google Scholar 

  • Pongrácz R, Bartholy J, Miklós E (2011) Analysis of projected climate change for Hungary using ENSEMBLES simulations. Appl Ecol Environ Res 9(4):387–398

    Article  Google Scholar 

  • Pongrácz R, Bartholy J, Bartha EB (2013) Analysis of projected changes in the occurrence of heat waves in Hungary. Adv Geosci 35:115–122. doi:10.5194/adgeo-35-115-2013

    Article  Google Scholar 

  • Preston B, Yuen EJ, Westaway RM (2011) Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks. Sustain Sci 6:177–202. doi:10.1007/s11625-011-0129-1

    Article  Google Scholar 

  • Rangwala I, Miller J (2012) Climate change in mountains: a review of elevation dependent warming and its possible causes. Clim Chang 114(3):527–547. doi:10.1007/s10584-012-0419-3

    Article  Google Scholar 

  • Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck P (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68. doi:10.1016/j.agee.2005.11.027

    Article  Google Scholar 

  • Ruffini FL, Streifeneder T, Eiselt B (2006) Implementing and international mountain convention: an approach for the delimitation of the Carpathian convention area. European Academy, Bolzano

    Google Scholar 

  • Samson J, Berteaux D, McGill BJ, Humphries MM (2011) Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Global Ecol Biogeogr 20:532–544. doi:10.1111/j.1466-8238.2010.00632.x

    Article  Google Scholar 

  • Schulze LL, and Dev Tech Systems (2002) FAA Section 119 Biodiversity Analysis for Serbia and Montenegro. Prepared for USAID FRY

  • Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. doi:10.1038/nclimate2318

    CAS  Article  Google Scholar 

  • Simpson M, Prots B (2013) Predicting the distribution of invasive plants in the Ukrainian Carpathians under climatic change and intensification of anthropogenic disturbances: implications for biodiversity conservation. Environ Conserv 40:167–181. doi:10.1017/S037689291200032X

    Article  Google Scholar 

  • Solár J, Janiga M (2013) Long-term changes in Dwarf Pine (Pinus mugo) cover in the High Tatra Mountains, Slovakia. Mt Res Dev 33(1):1–61. doi:10.1659/MRD-JOURNAL-D-12-00079.1

    Article  Google Scholar 

  • Spinoni J, Szalai S, Szentimrey T, Lakatos M, Bihari Z, Nagy A, Németh Á, Kovács T, Mihic D, Dacic M, Petrovic P, Kržič A, Hiebl J, Auer I, Milkovic J, Štepánek P, Zahradníček P, Kilar P, Limanowka D, Pyrc R, Cheval S, Birsan MV, Dumitrescu A, Deak G, Matei M, Antolovic I, Nejedlík P, Štastný P, Kajaba P, Bochníček O, Galo D, Mikulová K, Nabyvanets Y, Skrynyk O, Krakovska S, Gnatiuk N, Tolasz R, Antofie T, Vogt J (2015) Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables. Int J Climatol 35(7):1322–1341. doi:10.1002/joc.4059

    Article  Google Scholar 

  • Stagl J, Hattermann FF, Vohland K (2015) Exposure to climate change in Central Europe: what can be gained from regional climate projections for management decisions of protected areas? Reg Environ Change 15(7):1409–1419. doi:10.1007/s10113-014-0704-y

    Article  Google Scholar 

  • Sun G, Liu Y (2013) Forest Influences on climate and water resources at the landscape to regional scale. In: Fu B, Bruce JC (eds) Landscape Ecology for Sustainable Environment and Culture. Springer, Berlin, pp 309–334

    Chapter  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83(3):383–402. doi:10.1890/12-1503.1

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245. doi:10.1073/pnas.0409902102

    CAS  Article  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? In: Nentwig W (ed) Biological invasions ecological studies 193, vol 193, vol 193. Springer, Berlin, Heidelberg, pp 197–211

    Google Scholar 

  • Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theor Appl Climatol 117:579–587. doi:10.1007/s00704-013-1030-x

    Article  Google Scholar 

  • Trombik J, Hlásny T (2013) Free European data on forest distribution: overview and evaluation. J For Sci 59:447–457

    Google Scholar 

  • Turnock D (2002) Ecoregion-based conservation in the Carpathians and the land use implications. Land Use Policy 19:47–63

    Article  Google Scholar 

  • Vacik H, Torresan C, Hujala T, Khadka C, Reynolds K (2013) The role of knowledge management tools in supporting sustainable forest management. For Syst 22(3):442–455. doi:10.5424/fs/2013223-02954

    Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100AD. Proc Natl Acad Sci 104(14):5738–5742. doi:10.1073/pnas.0606292104

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the projects ITMS 26220120069 (30 %) and ITMS 26220220066 (30 %) supported by the Operational Programme Research and Development funded by the European Regional Development Fund; projects of the Slovak Research and Development Agency under contracts APVV–0111–10 (15 %) and APVV–0243–11 (15 %); and project of the National Agency for Agriculture Research of the Czech Republic No. QJ1220316 (5 %). The research was also supported by the Hungarian Scientific Research Fund (OTKA K104816) (5 %).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Hlásny.

Additional information

Editor: Christopher Reyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2015 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hlásny, T., Trombik, J., Dobor, L. et al. Future climate of the Carpathians: climate change hot-spots and implications for ecosystems. Reg Environ Change 16, 1495–1506 (2016). https://doi.org/10.1007/s10113-015-0890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0890-2

Keywords

  • Climate exposure
  • Central and south-eastern Europe
  • Climate change adaptation
  • Drought
  • Biodiversity