Regional Environmental Change

, Volume 16, Issue 7, pp 1891–1904 | Cite as

Climate change impacts, vulnerability and adaptive capacity of the electrical energy sector in Cyprus

  • Christos Giannakopoulos
  • Basilis Psiloglou
  • Giannis Lemesios
  • Dimitris Xevgenos
  • Christina Papadaskalopoulou
  • Anna Karali
  • Konstantinos V. Varotsos
  • Maria Zachariou-Dodou
  • Konstantinos Moustakas
  • Kyriaki Ioannou
  • Michael Petrakis
  • Maria Loizidou
Original Article

Abstract

The purpose of this study was to investigate the climate change impacts, vulnerability and adaptive capacity of the electrical energy sector in Cyprus. Spatial vulnerability of the island was assessed using the degree-day indicator to investigate heating and cooling demands in the near future using daily temperature projections from regional climate models (RCMs). Using daily electrical energy consumption data for the present climate, an impact model linking consumption and temperature was constructed and this relationship was projected to the future climate using the data from the RCMs and assuming the same technology use. Our impact model results showed that for the period between November and April (‘cold period’), a decreasing trend in electrical energy consumption is evident due to warmer conditions in the near future, while for the period between May and October (‘warm period’), an increasing trend in electricity consumption is evident as warmer conditions dominate by 2050. Regarding the spatial vulnerability assessment, the cooling degree-day indicator testified that major increases in cooling demand, between 100 and 200 degree-days, are expected in inland and southern regions during the summer in the near future. In addition, increases of about 20–50 degree-days are anticipated during autumn. Conversely, energy demand for heating is projected to decrease during spring and winter, especially in the higher elevation parts of the island. More precisely, reductions of about 30–75 degree-days are projected during spring, while greater reductions of about 60–90 degree-days are expected during winter in heating demand, especially for in the near future. The ability of the energy sector to adapt and follow these changes was deemed to be satisfactory reducing the overall vulnerability of the sector to future climate change.

Keywords

Climate change Electrical energy demand Degree-days Impacts Adaptive capacity Vulnerability Cyprus 

References

  1. Akil YS, Miyauchi H (2010) Elasticity coefficient of climatic conditions for electricity consumption analysis. Paper presented at Power System Technology (POWERCON), 2010 international conference, Hangzhou. doi:10.1109/POWERCON.2010.5666077
  2. Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, Devoy R et al (2007) Europe. In: Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541–580Google Scholar
  3. Apadula F, Bassini A, Elli A, Scapin S (2012) Relationships between meteorological variables and monthly electricity demand. Appl Energy 98:346–356. doi:10.1016/j.apenergy.2012.03.053 CrossRefGoogle Scholar
  4. Bašta M, Helman K (2013) Scale-specific importance of weather variables for explanation of variations of electricity consumption: the case of Prague, Czech Republic. Energy Econ 40:503–514. doi:10.1016/j.eneco.2013.07.023 CrossRefGoogle Scholar
  5. Beccali M, Cellura M, Lo Brano V, Marvuglia A (2008) Short-term prediction of household electricity consumption: assessing weather sensitivity in a Mediterranean area. Renew Sustain Energy Rev 12(8):2040–2065. doi:10.1016/j.rser.2007.04.010 CrossRefGoogle Scholar
  6. Bessec M, Fouquau J (2008) The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach. Energy Econ 30:2705–2721. doi:10.1016/j.eneco.2008.02.003 CrossRefGoogle Scholar
  7. Blázquez L, Boogen N, Filippini M (2013) Residential electricity demand in Spain: new empirical evidence using aggregate data. Energy Econ 36:648–657. doi:10.1016/j.eneco.2012.11.010 CrossRefGoogle Scholar
  8. Cancelo JR, Espasa A, Grafe R (2008) Forecasting the electricity load from one day to one week ahead for the Spanish system operator. Int J Forecast 24:588–602. doi:10.1016/j.ijforecast.2008.07.005 CrossRefGoogle Scholar
  9. Christenson M, Manz H, Gyalistras D (2006) Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manag 47:671–686. doi:10.1016/j.enconman.2005.06.009 CrossRefGoogle Scholar
  10. CYPADAPT (2014) National adaptation plan of Cyprus to climate change, Deliverable 5.1. LIFE10 ENV/CY/000723 project. http://cypadapt.uest.gr//wp-content/uploads/20141219/deliverable_5.1_english.pdf
  11. Egelioglu F, Mohamad AA, Guven H (2001) Economic variables and electricity consumption in Northern Cyprus. Energy 26:355–362. doi:10.1016/S0360-5442(01)00008-1 CrossRefGoogle Scholar
  12. Electricity Authority of Cyprus (EAC) (2014) Annual report 2013, Nicosia. http://www.eac.com.cy/EN/EAC/FinancialInformation/Documents/AHK%202013%20ENGLISH.pdf
  13. El-Shaarawi MAI, Al-Marsi N (1996) Weather data and heating-degree days for Saudi Arabia. Energy 21:39–44. doi:10.1016/0360-5442(95)00072-0 CrossRefGoogle Scholar
  14. Eskeland GS, Mideksa TK (2010) Electricity demand in a changing climate. Mitig Adapt Strateg Glob Change 15(8):877–897. doi:10.1007/s11027-010-9246-x CrossRefGoogle Scholar
  15. Giannakopoulos C, Psiloglou B (2006) Trends in energy load consumption for Athens, Greece: weather and non-weather related factors. Clim Res 31:97–108. doi:10.3354/cr031097 CrossRefGoogle Scholar
  16. Giannakopoulos C, Hadjinicolau P, Zeferos C, Demosthenous G (2009a) Changing energy requirements in the Mediterranean under changing climatic conditions. Energies 2:805–815. doi:10.3390/en20400805 CrossRefGoogle Scholar
  17. Giannakopoulos C, LeSager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009b) Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Glob Planet Change 68:209–224. doi:10.1016/j.gloplacha.2009.06.001 CrossRefGoogle Scholar
  18. Hernández L, Baladrón C, Aguiar JM, Calavia L, Carro B, Sánchez-Esguevillas A, Cook DJ, Chinarro D, Gómez J (2012) A study of the relationship between weather variables and electric power demand inside a smart grid/smart world framework. Sensors 12(9):11571–11591. doi:10.3390/s120911571 CrossRefGoogle Scholar
  19. Ihara T, Genchi Y, Sato T, Yamaguchi K, Endo Y (2008) City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan. Energy 33:1634–1645. doi:10.1016/j.energy.2008.06.005 CrossRefGoogle Scholar
  20. Kadioğlu M, Şen Z (1999) Degree day formulations and application in Turkey. J Appl Meteorol 38:837–846. doi:10.1175/1520-0450(1999)038<0837:DDFAAI>2.0.CO;2 CrossRefGoogle Scholar
  21. Kadioğlu M, Şen Z, Gültekin L (1999) Spatial heating monthly degree-day features and climatologic patterns in Turkey. Theor Appl Climatol 64:263–269. doi:10.1007/s007040050128 CrossRefGoogle Scholar
  22. Klein DR, Olonscheck M, Walther C, Kropp JP (2013) Susceptibility of the European electricity sector to climate change. Energy 59:183–193. doi:10.1016/j.energy.2013.06.048 CrossRefGoogle Scholar
  23. Kolokotroni M, Davies M, Croxford B, Bhuiyan S, Mavrogianni A (2010) A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: case-study of London. Sol Energy 84:2246–2255. doi:10.1016/j.solener.2010.08.002 CrossRefGoogle Scholar
  24. Lam JC, Tang HL, Li DHW (2008a) Seasonal variations in residential and commercial sector electricity consumption in Hong Kong. Energy 33:513–523. doi:10.1016/j.energy.2007.10.002 CrossRefGoogle Scholar
  25. Lam JC, Wan KKW, Cheung KL, Yang L (2008b) Principal component analysis of electricity use in office buildings. Energy Build 40:828–836. doi:10.1016/j.enbuild.2007.06.001 CrossRefGoogle Scholar
  26. Manera M, Marzullo A (2005) Modelling the load curve of aggregate electricity consumption using principal components. Environ Model Softw 20:1389–1400. doi:10.1016/j.envsoft.2004.09.019 CrossRefGoogle Scholar
  27. Matzarakis A, Balafoutis C (2004) Heating degree-days over Greece as an index of energy consumption. Int J Climatol 24:1817–1828. doi:10.1002/joc.1107 CrossRefGoogle Scholar
  28. Mehleri ED, Sarimveis H, Markatos NC, Papageorgiou LG (2013) Optimal design and operation of distributed energy systems: application to Greek residential sector. Renew Energy 51:331–342. doi:10.1016/j.renene.2012.09.009 CrossRefGoogle Scholar
  29. Miller NL, Hayhoe K, Jin J, Auffhammer M (2008) Climate, extreme heat, and electricity demand in California. J Appl Meteorol Climatol 47:1834–1844. doi:10.1175/2007JAMC1480.1 CrossRefGoogle Scholar
  30. Ministry of Energy, Commerce, Industry and Tourism (MCIT) (2010) National renewable energy action plan (2010–2020). Republic of Cyprus, Nicosia. http://ec.europa.eu/energy/sites/ener/files/documents/dir_2009_0028_action_plan_cyprus.zip
  31. Ministry of Energy, Commerce, Industry and Tourism (MCIT) (2011) 2nd national energy efficiency action plan of Cyprus, Republic of Cyprus, Nicosia. http://www.buildup.eu/sites/default/files/content/CY%20-%20Energy%20Efficiency%20Action%20Plan%20EN.pdf
  32. Mirasgedis S, Sarafidis Y, Georgopoulou E, Kotroni V, Lagouvardos K, Lalas DP (2007) Modeling framework for estimating impacts of climate change on electricity demand at regional level: case of Greece. Energy Convers Manag 48:1737–1750. doi:10.1016/j.enconman.2006.10.022 CrossRefGoogle Scholar
  33. Moral-Carcedo J, Vicéns-Otero J (2005) Modeling the non-linear response of Spanish electricity demand to temperature variations. Energy Econ 27:477–494. doi:10.1016/j.eneco.2005.01.003 CrossRefGoogle Scholar
  34. Moustris KP, Nastos PT, Bartzokas A, Larissi IK, Zacharia PT, Paliatsos AG (2014) Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theor Appl Climatol. doi:10.1007/s00704-014-1308-7 Google Scholar
  35. Mudelsee M, Alkio M (2007) Quantifying effects in two-sample environmental experiments using bootstrap confidence intervals. Environ Model Softw 22:84–96. doi:10.1016/j.envsoft.2005.12.001 CrossRefGoogle Scholar
  36. Nakićenović N, Swart R (eds) (2000) IPCC special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  37. Ouedraogo NS (2013) Energy consumption and economic growth: evidence from the economic community of West African States (ECOWAS). Energy Econ 36:637–647. doi:10.1016/j.eneco.2012.11.011 CrossRefGoogle Scholar
  38. Ozturk HK, Ceylan H (2005) Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study. Int J Energy Res 29:829–840. doi:10.1002/er.1092 CrossRefGoogle Scholar
  39. Papakostas K, Mavromatis T, Kyriakis N (2010) Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renew Energy 35:1376–1379. doi:10.1002/er.1092 CrossRefGoogle Scholar
  40. Pardo A, Meneu V, Valor E (2002) Temperature and seasonality influences on Spanish electricity load. Energy Econ 24:55–70. doi:10.1016/S0140-9883(01)00082-2 CrossRefGoogle Scholar
  41. Psiloglou BE, Giannakopoulos C, Majithia S, Petrakis M (2009) Factors affecting electricity demands in Athens, Greece and London, UK: a comparative assessment. Energy 34:1855–1863. doi:10.1016/j.energy.2009.07.033 CrossRefGoogle Scholar
  42. Sailor DJ, Muñoz JR (1997) Sensitivity of electricity and natural gas consumption to climate in the USA: methodology and results for eight states. Energy 22:987–998. doi:10.1016/S0360-5442(97)00034-0 CrossRefGoogle Scholar
  43. Thatcher MJ (2007) Modeling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia. Energy 32:1647–1659. doi:10.1016/j.energy.2006.12.005 CrossRefGoogle Scholar
  44. Thom HSC (1962) Normal degree days above any base by the universal truncation coefficient. Mon Weather Rev 94:461–465. doi:10.1175/1520-0493(1966)094<0461:NDDAAB>2.3.CO;2 CrossRefGoogle Scholar
  45. Tselepidaki I, Santamouris M, Asimakopoulos DN, Kontoyiannidis S (1994) On the variability of cooling degreedays in an urban environment: application to Athens, Greece. Energy Build 21:93–99. doi:10.1016/0378-7788(94)90002-7 CrossRefGoogle Scholar
  46. Valor E, Meneu V, Caselles V (2001) Daily air temperature and electricity load in Spain. J Appl Meteorol 40:1413–1421. doi:10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2 CrossRefGoogle Scholar
  47. Włodarczyk A, Zawada M (2010) Modeling the impact of weather factors in electricity in Southern Poland. Paper presented at 2010 7th international conference on the European Energy Market (EEM), Madrid. doi:10.1109/EEM.2010.5558738
  48. Xiao N, Zarnikau J, Damien P (2007) Testing functional forms in energy modeling: an application of the Bayesian approach to the US electricity demand. Energy Econ 29:158–166. doi:10.1016/j.eneco.2006.02.005 CrossRefGoogle Scholar
  49. Zachariadis T, Pashourtidou N (2007) An empirical analysis of electricity consumption in Cyprus. Energy Econ 29:183–198. doi:10.1016/j.eneco.2006.05.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christos Giannakopoulos
    • 1
  • Basilis Psiloglou
    • 1
  • Giannis Lemesios
    • 1
  • Dimitris Xevgenos
    • 2
  • Christina Papadaskalopoulou
    • 2
  • Anna Karali
    • 1
  • Konstantinos V. Varotsos
    • 1
  • Maria Zachariou-Dodou
    • 2
  • Konstantinos Moustakas
    • 2
  • Kyriaki Ioannou
    • 3
  • Michael Petrakis
    • 1
  • Maria Loizidou
    • 2
  1. 1.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  2. 2.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  3. 3.Department of EnvironmentMinistry of Agriculture, Rural Development and EnvironmentNicosiaCyprus

Personalised recommendations