Regional Environmental Change

, Volume 16, Issue 5, pp 1319–1331 | Cite as

Regionalization of climate scenarios impacts on maize production and the role of cultivar and planting date as an adaptation strategy

  • Marcos A. Lana
  • Frank Eulenstein
  • Sandro Schlindwein
  • Edgardo Guevara
  • Santiago Meira
  • Angelika Wurbs
  • Stefan Sieber
  • Nikolai Svoboda
  • Michelle Bonatti
Original Article


Understanding climate change and its impacts on crops is crucial to determine adaptation strategies. Simulations of climate change impacts on agricultural systems are often run for individual sites. Nevertheless, the scaling up of crop model results can bring a more complete picture, providing better inputs for the decision-making process. The objective of this paper was to present a procedure to assess the regional impacts of climate scenarios on maize production, as well as the effect of crop cultivars and planting dates as an adaptation strategy. The focus region is Santa Catarina State, Brazil. The identification of agricultural areas cultivated with annual crops was done for the whole state, followed by the coupling of soil and weather information necessary for the crop modeling procedure (using crop model and regional circulation models). The impact on maize yields, so as the effect of adaptation strategies, was calculated for the 2012–2040 period assuming different maize cultivars and planting dates. Results showed that the exclusion of non-agricultural areas allowed the crop model to correctly simulate local and regional production. Simulations run without adaptation strategies for the 2012–2040 period showed reductions of 11.5–13.5 % in total maize production, depending on the cultivar. By using the best cultivar for each agricultural area, total state production was increased by 6 %; when using both adaptation strategies—cultivar and best planting date—total production increased by 15 %. This analysis showed that cultivar and planting date are feasible adaptation strategies to mitigate deleterious effects of climate scenarios, and crop models can be successfully used for regional assessments.


Climate change Adaptation Crop models GIS Maize Corn 


  1. Andersson JCM, Zehnder AJB, Wehrli B, Yang H (2012) Improved SWAT model performance with time-dynamic Voronoi tessellation of climatic input data in Southern Africa. J Am Water Resour As 48:480–493. doi:10.1111/j.1752-1688.2011.00627.x CrossRefGoogle Scholar
  2. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, GenevaGoogle Scholar
  3. Ceglar A, Kajfež-Bogataj L (2012) Simulation of maize yield in current and changed climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur J Agron 37:83–95. doi:10.1016/j.eja.2011.11.005 CrossRefGoogle Scholar
  4. CLARIS-LPB (2012) CLARIS LPB data archive center. Accessed 01 Feb 2013
  5. Darnton-Hill I, Margetts B, Deckelbaum R (2004) Public health nutrition and genetics: implications for nutrition policy and promotion. Proc Nut Soc 63:173–185. doi:10.1079/PNS2003330 CrossRefGoogle Scholar
  6. Domínguez M, Gaertner M, de Rosnay P, Losada T (2010) A regional climate model simulation over West Africa: parameterization tests and analysis of land-surface fields. Clim Dyn 35:249–265. doi:10.1007/s00382-010-0769-3 CrossRefGoogle Scholar
  7. Environment BMo (2012) Mapa de Cobertura Vegetal. Accessed 1 July 2012
  8. Epagri/Cepa (2011) Síntese Anual da Agricultura de Santa Catarina. FlorianópolisGoogle Scholar
  9. Epagri/IBGE (2012) Mapoteca Topográfica Digital de Santa Catarina. Accessed 1/9/2011
  10. FAO (2012) Crop prospects and food situation, vol 4. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  11. Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41. doi:10.3354/cr033027 CrossRefGoogle Scholar
  12. He J, Dukes MD, Jones JW, Graham WD, Judge J (2009) Applying glue for estimating ceres-maize genetic and soil parameters for sweet corn production. T Asabe 52:1907–1921CrossRefGoogle Scholar
  13. Homaee M, Dirksen C, Feddes RA (2002) Simulation of root water uptake I. Non-uniform transient salinity using different macroscopic reduction functions. Agr Water Manage 57:89–109. doi:10.1016/S0378-3774(02)00072-0 CrossRefGoogle Scholar
  14. Hoogenboom G (2000) Contribution of agrometeorology to the simulation of crop production and its applications. Agric For Meteorol 103:137–157. doi:10.1016/S0168-1923(00)00108-8 CrossRefGoogle Scholar
  15. Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dynam 27:787–813. doi:10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  16. Hunt LA, Boote KJ (1998) Data for model operation, calibration, and evaluation. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production, 1st edn. Kluwer Academic Publishers, Dordrecht, pp 9–40CrossRefGoogle Scholar
  17. IBGE (2012) SIDRA-IBGE: Aggregated database. Accessed 1 Aug 2012
  18. IPCC (2007) Climate change 2007: synthesis report. contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  19. IPCC (2011) AR4 forcings: atmospheric CO2 concentration, ISAMS. Accessed 2/8/2012
  20. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3:181–199. doi:10.3390/atmos3010181 CrossRefGoogle Scholar
  21. Jamieson PD, Porter JR, Wilson DR (1991) A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res 27:337–350. doi:10.1016/0378-4290(91)90040-3 CrossRefGoogle Scholar
  22. Jones JW et al (1998) Decision support system for agrotechnology transfer (DSSAT) v. 3. In: De Vries FWT, Teng PS, Metseelar K (eds) Systems approaches for sustainable agricultural development, vol 7. Kluwer academics, Dordrecht, pp 157–178Google Scholar
  23. Kamara AY, Ekeleme F, Chikoye D, Omoigui LO (2009) Planting date and cultivar effects on grain yield in dryland corn production. Agron J 101:91–98. doi:10.2134/agronj2008.0090 CrossRefGoogle Scholar
  24. Kist V, Ogliari JB, Miranda JB, Alves AC (2010) Genetic potential of a maize population from Southern Brazil for the modified convergent–divergent selection scheme. Euphytica 176:25–36. doi:10.1007/s10681-010-0207-y CrossRefGoogle Scholar
  25. Laux P, Jäckel G, Tingem RM, Kunstmann H (2010) Impact of climate change on agricultural productivity under rainfed conditions in Cameroon: a method to improve attainable crop yields by planting date adaptations. Agric For Meteorol 150:1258–1271. doi:10.1016/j.agrformet.2010.05.008 CrossRefGoogle Scholar
  26. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental panel on climate change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres 115:D10101. doi:10.1029/2009JD012882 CrossRefGoogle Scholar
  27. Li X, Takahashi T, Suzuki N, Kaiser HM (2014) Impact of climate change on maize production in northeast and southwest china and risk mitigation strategies. APCBEE Procedia 8:11–20. doi:10.1016/j.apcbee.2014.01.073 CrossRefGoogle Scholar
  28. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73. doi:10.1016/0169-7722(91)90038-3 CrossRefGoogle Scholar
  29. Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agr For Meteorol 150:1443–1452. doi:10.1016/j.agrformet.2010.07.008 CrossRefGoogle Scholar
  30. Ogoshi RM, Cagauan BG, Tsuji GY (1999) Field and laboratory methods for the collection of the minimum data set. DSSAT v3 vol 4–8. University of Hawaii, HonolunuGoogle Scholar
  31. Okabe A, Boots B, Sugihara K, Chiu SN (2009) Spatial tessellations: concepts and applications of Voronoi diagrams vol 501. Probability and statistics, 2 edn. Wiley, SussexGoogle Scholar
  32. Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262CrossRefGoogle Scholar
  33. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, Rocha RP, Steiner AL (2007) The ITCP RegCM3 and RegCNET: regional climate modeling for the developing World. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395 CrossRefGoogle Scholar
  34. Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta model. Theor Appl Climatol 99:75–93. doi:10.1007/s00704-09-0123-z CrossRefGoogle Scholar
  35. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  36. Samuelsson PATR et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23. doi:10.1111/j.1600-0870.2010.00478.x CrossRefGoogle Scholar
  37. Soler CMT, Sentelhas PC, Hoogenboom G (2007) Application of the CSM-CERES-maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur J Agron 27:165–177. doi:10.1016/j.eja.2007.03.002 CrossRefGoogle Scholar
  38. Solman S, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157. doi:10.1007/s00382-013-1667-2 CrossRefGoogle Scholar
  39. Solos E (1999) Sistema brasileiro de classificação de solos. Embrapa Solos, Rio de JaneiroGoogle Scholar
  40. Stigter CJ, Dawei Z, Onyewotu LOZ, Xurong M (2005) Using Traditional Methods and Indigenous Technologies for Coping with Climate Variability Increasing Climate Variability and Change. In: Sivakumar MVK, Motha RP (eds) Salinger J. Springer, Netherlands, pp 255–271Google Scholar
  41. Team QGD (2012) Quantum GIS Geographic Information System, 1.7 Wroclaw edn. Open source geospatial foundation projectGoogle Scholar
  42. USDA (2012) Livestock and poultry: world markets and trade. Accessed 1/8/2012
  43. Wilkens PW (2004) DSSAT v4 Weather Data Editing Program (Weatherman). In: Data management and analysis tools: decision support system for agrotechnology transfer version 4.0: DSSAT v4 :Data Management and Analysis Tools, vol 2. University of Hawaii, Honolulu, pp 92-151Google Scholar
  44. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30:79–82. doi:10.3354/Cr030079 CrossRefGoogle Scholar
  45. Willmott CJ et al (1985) Statistics for the evaluation and comparison of models. J Geophys Res-Oceans 90:8995–9005. doi:10.1029/Jc090ic05p08995 CrossRefGoogle Scholar
  46. Xiong W, Holman I, Conway D, Lin E, Li Y (2008) A crop model cross calibration for use in regional climate impacts studies. Ecol Model 213:365–380. doi:10.1016/j.ecolmodel.2008.01.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF)Institute of Land Use SystemsMünchebergGermany
  2. 2.Federal University of Santa CatarinaFlorianópolisBrazil
  3. 3.National Institute of Agricultural TechnologyPergaminoArgentina
  4. 4.Leibniz Centre for Agricultural Landscape ResearchInstitute of Socio-economicsMünchebergGermany

Personalised recommendations