Skip to main content

Advertisement

Log in

Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Understanding patterns, dynamics, and drivers of land use is crucial for improving our ability to cope with sustainability challenges. The human appropriation of net primary production (HANPP) framework provides a set of integrated socio-ecological indicators that quantify how land use alters energy flows in ecosystems via land conversions and biomass harvest. Thus, HANPP enables researchers to systematically and consistently assess the outcome of changes in land cover and land-use intensity across spatio-temporal scales. Yet, fine-scale HANPP assessments are so far missing, an information important to address site-specific ecological implications of land use. Here, we provide such an assessment for Europe at a 1-km scale for the years 1990, 2000, and 2006. The assessment was based on a consistent land-use/biomass flow dataset derived from statistical data, remote sensing maps, and a dynamic global vegetation model. We find that HANPP in Europe amounted to ~43 % of potential productivity, well above the global average of ~25 %, with little variation in the European average since 1990. HANPP was highest in Central Europe and lower in Northern and Southern Europe. At the regional level, distinct changes in land-use intensity were observed, most importantly the decline of cropland areas and yields following the breakdown of socialism in Eastern Europe and the subsequent recovery after 2000, or strong dynamics related to storm events that resulted in massive salvage loggings. In sum, however, these local dynamics cancelled each other out at the aggregate level. We conclude that this finding warrants further research into aspects of the scale-dependency of dynamics and stability of land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bach M, Breuer L, Frede HG et al (2006) Accuracy and congruency of three different digital land-use maps. Landsc Urban Plan 78:289–299. doi:10.1016/j.landurbplan.2005.09.004

    Article  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S et al (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706. doi:10.1111/j.1365-2486.2006.01305.x

    Article  Google Scholar 

  • Bouwman AF, Van der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in world ruminant production systems. Agric Syst 84:121–153. doi:10.1016/j.agsy.2004.05.006

    Article  Google Scholar 

  • Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133:267–279. doi:10.1016/j.agee.2009.04.026

    Article  CAS  Google Scholar 

  • Britz W, Witzke P (2008) CAPRI model documentation 2008: version 2

  • Britz W, Heckelei T, Kempen M (2008) Description of the CAPRI modeling system. Final Report. Universität Bonn, Bonn

  • Caetano M, Mata F, Freire S (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. Glob Dev Environ Earth Obs Space 459–467

  • Cihlar J, Jansen LJM (2001) from land cover to land use: a methodology for efficient land use mapping over large areas. Prof Geogr 53:275–289. doi:10.1111/0033-0124.00285

    Article  Google Scholar 

  • Copernicus Programme (2014) Copernicus land monitoring services. http://land.copernicus.eu/pan-european/corine-land-cover

  • Creutzig F, Ravindranath NH, Berndes G et al (2014) Bioenergy and climate change mitigation: an assessment. Glob Change Biol Bioenergy. doi:10.1111/gcbb.12205

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395. doi:10.5194/acp-8-389-2008

    Article  CAS  Google Scholar 

  • Doxa A, Paracchini ML, Pointereau P et al (2012) Preventing biotic homogenization of farmland bird communities: the role of high nature value farmland. Agric Ecosyst Environ 148:83–88. doi:10.1016/j.agee.2011.11.020

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Ellis EC, Kaplan JO, Fuller DQ et al (2013) Used planet: a global history. Proc Natl Acad Sci 110:7978–7985. doi:10.1073/pnas.1217241110

    Article  CAS  Google Scholar 

  • Erb K-H (2004) Land use-related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems 7:563–572. doi:10.1007/s10021-004-0234-4

    Article  Google Scholar 

  • Erb K-H (2012) How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol Econ 76:8–14. doi:10.1016/j.ecolecon.2012.02.005

    Article  Google Scholar 

  • Erb KH, Gaube V, Krausmann F et al (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2:191–224

    Article  Google Scholar 

  • Erb K-H, Krausmann F, Gaube V et al (2009) Analyzing the global human appropriation of net primary production—processes, trajectories, implications. An introduction. Ecol Econ 69:250–259. doi:10.1016/j.ecolecon.2009.07.001

    Article  Google Scholar 

  • Erb K-H, Haberl H, Jepsen MR et al (2013) A conceptual framework for analysing and measuring land-use intensity. Curr Opin Environ Sustain 5:464–470. doi:10.1016/j.cosust.2013.07.010

    Article  Google Scholar 

  • EUROSTAT (2014) NUTS—nomenclature of territorial units for statistics. http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction

  • Evans JM, Fletcher RJ, Alavalapati J (2010) Using species distribution models to identify suitable areas for biofuel feedstock production: modeling biofuel feedstock production. GCB Bioenergy 2:63–78. doi:10.1111/j.1757-1707.2010.01040.x

    Article  Google Scholar 

  • Fetzel T, Gradwohl M, Erb K-H (2014) Conversion, intensification, and abandonment: a human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecol Econ 97:201–208. doi:10.1016/j.ecolecon.2013.12.002

    Article  Google Scholar 

  • Fisher M, Carver S, Kun S et al (2010) Review of status and conservation of wild land in Europe. http://www.wildlandresearch.org/our-work/downloads/

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Forest Europe, UNECE, FAO (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. Ministerial conference on the protection of forests in Europe. Forest Europe Liaison Unit Oslo, Oslo

  • Gardiner B, Blennow K, Carnus J-M et al (2010) Destructive storms in European forests: past and forthcoming impacts. Final report to European Commission—DG environment. European Forest Institute, Atlantic European Regional Office—EFIATLANTIC, Bordeaux

  • Garnett T, Appleby MC, Balmford A et al (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34. doi:10.1126/science.1234485

    Article  CAS  Google Scholar 

  • Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8:045024. doi:10.1088/1748-9326/8/4/045024

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F et al (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci 104:12942–12947. doi:10.1073/pnas.0704243104

    Article  CAS  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391. doi:10.1146/annurev-environ-121912-094620

    Article  Google Scholar 

  • Hatna E, Bakker MM (2011) Abandonment and expansion of arable land in Europe. Ecosystems 14:720–731. doi:10.1007/s10021-011-9441-y

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • IAASTD (2009) Agriculture at a crossroads. International assessment of agricultural knowledge, science and technology for development (IAASTD), Global report. Island Press, Washington, DC

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Holefilled seamless SRTM data V4

  • Kopecky M, Kahabka H (2009) Updated delivery report European mosaic

  • Krausmann F, Erb K-H, Gingrich S et al (2008) Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471–487. doi:10.1016/j.ecolecon.2007.07.012

    Article  Google Scholar 

  • Krausmann F, Gingrich S, Haberl H et al (2012) Long-term trajectories of the human appropriation of net primary production: lessons from six national case studies. Ecol Econ 77:129–138. doi:10.1016/j.ecolecon.2012.02.019

    Article  Google Scholar 

  • Krausmann F, Erb K-H, Gingrich S et al (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci 110:10324–10329. doi:10.1073/pnas.1211349110

    Article  CAS  Google Scholar 

  • Kuemmerle T, Erb K, Meyfroidt P et al (2013) Challenges and opportunities in mapping land use intensity globally. Curr Opin Environ Sustain 5:484–493. doi:10.1016/j.cosust.2013.06.002

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472. doi:10.1073/pnas.1100480108

    Article  CAS  Google Scholar 

  • Leip A, Marchi G, Koeble R et al (2008) Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 5:73–94

    Article  Google Scholar 

  • Levers C, Verkerk PJ, Müller D et al (2014) Drivers of forest harvesting intensity patterns in Europe. For Ecol Manag 315:160–172. doi:10.1016/j.foreco.2013.12.030

    Article  Google Scholar 

  • Lindenmayer D, Cunningham S, Young A (2012) Land use intensification: effects on agriculture, biodiversity and ecological processes. Csiro, Canberra

    Google Scholar 

  • Lindroth A, Lagergren F, Grelle A et al (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15:346–355. doi:10.1111/j.1365-2486.2008.01719.x

    Article  Google Scholar 

  • Luyssaert S, Jammet M, Stoy PC et al (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4:389–393. doi:10.1038/nclimate2196

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi:10.1126/science.277.5325.504

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington

    Google Scholar 

  • Müller D, Kuemmerle T, Rusu M, Griffiths P (2009) Lost in transition: determinants of post-socialist cropland abandonment in Romania. J Land Use Sci 4:109–129. doi:10.1080/17474230802645881

    Article  Google Scholar 

  • Neumann K, Elbersen BS, Verburg PH et al (2009) Modelling the spatial distribution of livestock in Europe. Landsc Ecol 24:1207–1222. doi:10.1007/s10980-009-9357-5

    Article  Google Scholar 

  • Niedertscheider M, Erb K (2014) Land system change in Italy from 1884 to 2007: analysing the north–south divergence on the basis of an integrated indicator framework. Land Use Policy 39:366–375. doi:10.1016/j.landusepol.2014.01.015

    Article  Google Scholar 

  • Niedertscheider M, Kuemmerle T, Müller D, Erb K-H (2014) Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob Environ Change 28:98–108. doi:10.1016/j.gloenvcha.2014.06.006

    Article  Google Scholar 

  • Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. doi:10.1016/j.landusepol.2011.07.003

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003

  • Rounsevell MDA, Pedroli B, Erb K-H et al (2012) Challenges for land system science. Land Use Policy 29:899–910. doi:10.1016/j.landusepol.2012.01.007

    Article  Google Scholar 

  • Rozelle S, Swinnen JF (2004) Success and failure of reform: Insights from the transition of agriculture. J Econ Lit 42(2):404–456

    Article  Google Scholar 

  • Smith P, Bustamante M, Ahammad H et al (2014a) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Soukuba Y (eds) Climate change 2014: contributions of working group III to the 5th assessment report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press, Geneva, Switzerland, Cambridge, UK (in press)

  • Smith WK, Cleveland CC, Reed SC, Running SW (2014b) Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys Res Lett. doi:10.1002/2013GL058857

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264. doi:10.1073/pnas.1116437108

    Article  CAS  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol 13:5–42

    Google Scholar 

  • UN (2000) Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries). UN-ECE/FAO contribution to the global forest resources assessment 2000. Main Report ECE/TIM/SP/17. United Nations Publications, New York

    Google Scholar 

  • Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover data for global change studies. Glob Change Biol 17:974–989. doi:10.1111/j.1365-2486.2010.02307.x

    Article  Google Scholar 

  • Verburg PH, Mertz O, Erb K-H et al (2013) Land system change and food security: towards multi-scale land system solutions. Curr Opin Environ Sustain 5:494–502. doi:10.1016/j.cosust.2013.07.003

    Article  Google Scholar 

  • Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373. doi:10.2307/1310258

    Article  Google Scholar 

  • Verkerk PJ, Levers C, Kuemmerle T et al (submitted) Mapping wood production in European forests. For Ecol Manag

Download references

Acknowledgments

We gratefully acknowledge support by the European Commission (Project VOLANTE FP7-ENV-2010-265104), the European Research Council (ERC-2010-Stg-263522 LUISE), and the Austrian Science Fund (FWF), Project P20812-G11. This article contributes to the Global Land Project (http://www.globallandproject.org). Spatial data presented in this study will be made available at http://www.uni-klu.ac.at/socec/inhalt/1088.htm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Erb.

Additional information

Editor: Will Steffen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plutzar, C., Kroisleitner, C., Haberl, H. et al. Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Reg Environ Change 16, 1225–1238 (2016). https://doi.org/10.1007/s10113-015-0820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0820-3

Keywords

Navigation