Skip to main content

Advertisement

Log in

Knowing the past to forecast the future: a case study on a relictual, endemic species of the SW Alps, Berardia subacaulis

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Future climate change may lead to a substantial loss of biodiversity, particularly affecting mountain regions, including the Alps. Range-size reduction in high mountain plant species is predicted to be more pronounced for endemic species. Investigating the broad temporal spectrum of range shifts is important for the conservation of biodiversity, since learning how species responded to climate change in the past provides useful insights on how they might react to warming trends in the present and future. Using species distribution models and an ensemble forecasting approach, we explored how the distribution of Berardia subacaulis, a monospecific genus endemic of the south-west Alps, may be affected by past and future projected climate change. During the last interglacial, the habitat suitability of Berardia was lower than present and a progressive increase was observed from the last glacial maximum until now. In the future, Berardia appears to lose more than 80 % of its range, becoming endangered by 2050. Our results suggest that Berardia probably survived past warmer periods in situ, expanding its distributional range during cooler periods. The severe future range contraction predicted for Berardia reflects similar results for other endemic species. As Berardia represents an interesting model species to evaluate the effects of climate warming on range size and shifts, demographic and precise range monitoring may be undertaken on this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distribution with climate. Ecography 28:693–695. doi:10.1111/j.2005.0906-7590.04253.x

    Article  Google Scholar 

  • Araújo MB, Nogués-Bravo J, Diniz-Filho AF, Haywood AM, Valdes PJ, Rahbek C (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15. doi:10.1111/j.2007.0906-7590.05318.x

    Article  Google Scholar 

  • Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37:1407–1413. doi:10.1111/j.1365-2699.2010.02300.x

    Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338. doi:10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  • Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 5:867–882. doi:10.3732/ajb.1200058

    Article  Google Scholar 

  • Barret SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Berger D, Chobanov DP, Mayer F (2010) Interglacial refugia and range shifts of the alpine grasshopper Stenobothrus cotticus (Orthoptera: Acrididae: Gomphocerinae). Org Divers Evol 10:123–133. doi:10.1007/s13127-010-0004-4

    Article  Google Scholar 

  • Breiman L (2001) Statistical modeling: the two cultures. Stat Sci 16:199–215. doi:10.1214/ss/1009213726

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New York

    Google Scholar 

  • Brotons L, Thuiller W, Araujo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448. doi:10.1111/j.0906-7590.2004.03764.x

    Article  Google Scholar 

  • Burga CA, Haeberli W, Krummenacher B, Walther GR (2003) Abiotische und biotische Dynamik in Gebirgsräumen—Status quo und Zukunftsperspektiven. In: Jeanneret F, Wastl-Walter D, Wiesmann U, Schwyn M (eds) Welt der Alpen—Gebirge der Welt. Jahrbuch der Geographischen Gesellschaft Bern 61. Haupt, Bern, pp 25–37

    Google Scholar 

  • Camenisch M (2002) Veränderungen der Gipfelflora im Bereich des Schweizerischen Nationalparks: ein Vergleich über die letzten 80 Jahre. Jahresber Nat forsch Ges Graubünden 111:27–37

    Google Scholar 

  • Casazza G, Barberis G, Minuto L (2005) Ecological characteristics and rarity of endemic plants of the Italian Maritime Alps. Biol Conserv 123:361–371. doi:10.1016/j.biocon.2004.12.005

    Article  Google Scholar 

  • Casazza G, Zappa E, Mariotti MG, Médail F, Minuto L (2008) Ecological and historical factors affecting distribution pattern and richness of endemic plant species: the case of Maritime and Ligurian Alps hotspot. Divers Distrib 14:47–58. doi:10.1111/j.1472-4642.2007.00412.x

    Article  Google Scholar 

  • Casazza G, Giordani P, Benesperi R, Foggi B, Viciani D, Filigheddu R, Farris E, Bagella S, Pisanu S, Mariotti MG (2014) Climate change hastens the conservation urgency of range-restricted plant species in the central-northern Mediterranean region. Biol Conserv 179:129–138. doi:10.1016/j.biocon.2014.09.015

    Article  Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc B 365:3149–3160. doi:10.1098/rstb.2010.0142

    Article  Google Scholar 

  • Conti F, Manzi A, Pedrotti F (1997) Liste rosse regionali delle piante d’Italia. WWF Italia. Società Botanica Italiana, Università di Camerino, Camerino

    Google Scholar 

  • Council of European Communities (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities 35:7–50

    Google Scholar 

  • Di Pasquale G, Garfì G, Quézel P (1992) Sur la presence d’un Zelkova nouveau en Sicile sud-orientale (Ulmaceae). Biocosme Mésogéen 8–9:401–409

    Google Scholar 

  • Diadema K, Bretagnollle F, Affre L, Yuan YM, Médail F (2005) Geographic strucutre of molecular variation of Gentiana ligustica (Gentianaceae) in the Maritime and Ligurian regional hotspot, inferred from ITS sequences. Taxon 54:887–894. doi:10.2307/25065475

    Article  Google Scholar 

  • Dubreuil M, Riba M, Mayol M (2008) Genetic structure and diversity in Ramonda myconi (Gesneriaceae): effects of historical climate change on a pre-glacial relict species. Am J Bot 95:577–587. doi:10.3732/ajb.2007320

    Article  CAS  Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning JC, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622. doi:10.1038/nclimate1514

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45. doi:10.1111/j.1600-0587.2009.05789.x

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341. doi:10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  • Faith D (2008) Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Biol Conserv 22:1461–1470. doi:10.1111/j.1523-1739.2008.01068.x

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol 19:473–483. doi:10.1111/gcb.12051

    Article  Google Scholar 

  • Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Garcia-Jacas N, Garnatje T, Susanna A, Vilatersana R (2002) Tribal and subtribal delimitation and phylogeny of the Cardueae (Asteraceae): a combined nuclear and chloroplast DNA analysis. Mol Phylogenet Evol 22:51–64. doi:10.1006/mpev.2001.1038

    Article  CAS  Google Scholar 

  • Grime GP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Hampe A, Arroyo J, Jordano P, Petit RJ (2003) Rangewide phylogeography of a bird-dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Mol Ecol 12:3415–3426. doi:10.1046/j.1365-294X.2003.02006.x

    Article  CAS  Google Scholar 

  • Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the earth surface. Geochem Geophys Geosyst 13:1525–2027. doi:10.1029/2012GC004370

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270. doi:10.1080/01621459.1994.10476866

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. doi:10.1111/j.0906-7590.2006.04700.x

    Article  Google Scholar 

  • Hewitt CM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1111/j.1095-8312.1996.tb01434.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hu J, Jiang Z (2011) Climate change hastens the conservation urgency of an endangered ungulate. Plos One 6(8):e22873. doi:10.1371/journal.pone.0022873

    Article  CAS  Google Scholar 

  • Ikeda H, Senni K, Fujii N, Setoguchi H (2006) Refugia of Potentilla matsumurae (Rosaceae) located at high mountains in the Japanese archipelago. Mol Ecol 15:3731–3740. doi:10.1111/j.1365-294X.2006.03054.x

    Article  CAS  Google Scholar 

  • IUCN (2012) Guidelines for application of IUCN Red List criteria at regional and national levels: version 4.0. IUCN, Gland

    Google Scholar 

  • Jimeméz-Valverde A, Lobo JM, Hortal J (2008) Not good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890. doi:10.1111/j.1472-4642.2008.00496.x

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Mol Ecol 12:931–949. doi:10.1046/j.1365-294X.2003.01781.x

    Article  CAS  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831

    Article  CAS  Google Scholar 

  • Maiorano L, Falcucci A, Zimmermann NE, Psomas A, Pottier J, Baisero D, Rondinini C, Guisan A, Boitani L (2011) The future of terrestrial mammals in the Mediterranean basin under climate change. Philos Trans R Soc B 366:2681–2692. doi:10.1098/rstb.2011.0121

    Article  Google Scholar 

  • Maiorano L, Amori G, Capula M, Falcucci A, Masi M, Montemaggiori A, Pottier J, Psomas A, Rondinini C, Russo D, Zimmermann NE, Boitani L, Guisan A (2013) Threats from climate change to terrestrial vertebrate hotspots in Europe. PLoS One 8:e74989. doi:10.1371/journal.pone.0074989

    Article  CAS  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233. doi:10.1038/35012234

    Article  CAS  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi:10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Médail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southeast France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–281. doi:10.1016/S0006-3207(96)00055-9

    Article  Google Scholar 

  • Minuto L, Grassi F, Casazza G (2006) Ecogeographic and genetic evaluation of endemic species in the Maritime Alps: the case of Moehringia lebrunii and M. sedoides (Caryophyllaceae). Pl Biosyst 140:146–155. doi:10.1080/11263500600756348

    Article  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare species support vulnerable functions in high-diversity ecosystems. Plos One 11(5):e1001569. doi:10.1371/journal.pbio.1001569

    Article  CAS  Google Scholar 

  • Musil R (1985) Paleobiography of terrestrial communities in Europe during the last glacial. Acta Musei Natl Pragae XLI B 1–2:25–56

    Google Scholar 

  • Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Global Ecol Biogeogr 18:521–531. doi:10.1111/j.1466-8238.2009.00476.x

    Article  Google Scholar 

  • Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning JC (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. Proc R Soc 278:3644–3653. doi:10.1098/rspb.2010.2769

    Article  Google Scholar 

  • Ozenda P (2009) On the genesis of the plant population in the Alps: new or critical aspects. C R Biol 332:1092–1103. doi:10.1016/j.crvi.2009.09.018

    Article  Google Scholar 

  • Patsiou T, Conti E, Zimmermann NE, Theodoridis S, Randin C (2014) Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob Change Biol 20:2286–2300. doi:10.1111/gcb.12515

    Article  Google Scholar 

  • Pawlowski B (1970) Remarques sur l’endémisme dans les Alpes et les Carpates. Vegetatio 21:181–243

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R et al (2010) Scenarios for global biodiversity in 21st century. Science 330:1469–1501. doi:10.1126/science.1196624

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569. doi:10.1111/j.1365-2486.2008.01766.x

    Article  Google Scholar 

  • Rebelo H, Jones G (2010) Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J Appl Ecol 47:410–420. doi:10.1111/j.1365-2664.2009.01765.x

    Article  Google Scholar 

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156. doi:10.1016/j.biocon.2012.06.011

    Article  Google Scholar 

  • Sillero N, Carretero MA (2012) Modelling the past and future distribution of contracting species. The Iberian lizard Podarcis carbonelli (Squamata: Lacertidae) as a case study. Zool Anz 252:289–298. doi:10.1016/j.jcz.2012.08.004

    Article  Google Scholar 

  • Skov F, Svenning JC (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380. doi:10.1111/j.0906-7590.2004.03823.x

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical Summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Stewart JR, Lister AM, Barnes I, Dalén L (2009) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671. doi:10.1098/rspb.2009.1272

    Article  Google Scholar 

  • Stokland JK, Halvorsen R, Stoa B (2011) Species distribution modelling—effect of design and sample size of pseudo-absence observations. Ecol Model 222:1800–1809. doi:10.1016/j.ecolmodel.2011.02.025

    Article  Google Scholar 

  • Susanna A, Garcia-Jacas N (2009) The tribe Cardueae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution, and biogeography of the compositae. IAPT, Bratislava, pp 293–313

    Google Scholar 

  • Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae (Compositae) revisited: insights from ITS, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 93:150–171. doi:10.3417/0026-6493(2006)93[150:TCCRIF]2.0.CO;2

    Article  Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to climate change. Science 315:640–642. doi:10.1126/science.1136401

    Article  CAS  Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573. doi:10.1111/j.1461-0248.2004.00614.x

    Article  Google Scholar 

  • Swab RM, Regan HM, Keith DA, Regan TJ, Ooi MKJ (2012) Niche models tell half the story: spatial context and life history traits influence species responses to global change. J Biogeogr 39:1266–1277. doi:10.1111/j.1365-2699.2012.02690.x

    Article  Google Scholar 

  • Terrab A, Schönswetter P, Talavera S, Vela E, Stuessy TF (2008) Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Mol Phylogenet Evol 48:94–102. doi:10.1016/j.ympev.2008.03.018

    Article  CAS  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps—a review. Clim Change 50:77–109. doi:10.1023/A:1010632015572

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green R, Bakkenes M et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005a) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357. doi:10.1111/j.1466-822X.2005.00162.x

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005b) Climate change threats to plant diversity in Europe. PNAS 23:8245–8250. doi:10.1073/pnas.0409902102

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Araujo MB (2008) ModOperating manual for BIOMOD. Laboratoire d’Ecologie Alpine, Université Joseph Fourier, Grenoble

    Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD: a platform for ensemble forecasting of species distribution. Ecography 32:369–373. doi:10.1111/j.1600-0587.2008.05742.x

    Article  Google Scholar 

  • Tribsch A (2004) Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J Biogeogr 31:747–760. doi:10.1111/j.1365-2699.2004.01065.x

    Article  Google Scholar 

  • Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm paleo-environmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52:477–497. doi:10.2307/3647447

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9:8. doi:10.1186/1472-6785-9-8

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Conservatoire Botanique National Alpin de Gap and to the Conservatoire Botanique National Méditerranéen de Porquerolles for allowing us to use the occurrence points from the SILENE and FLORE database. We are grateful to the two anonymous reviewers for their helpful comments. This work was funded by Parco Naturale Regionale delle Alpi Marittime and by Interreg Alcotra programme 2007-2013, project n. 192 BIODIVAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Guerrina.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrina, M., Conti, E., Minuto, L. et al. Knowing the past to forecast the future: a case study on a relictual, endemic species of the SW Alps, Berardia subacaulis . Reg Environ Change 16, 1035–1045 (2016). https://doi.org/10.1007/s10113-015-0816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0816-z

Keywords

Navigation