Skip to main content

Advertisement

Log in

Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Many studies have identified climate warming to be among the most important threats to biodiversity. Climate change is expected to have stronger effects on species with low genetic diversity, ectothermic physiology, small ranges, low effective populations sizes, specific habitat requirements and limited dispersal capabilities. Despite an ever-increasing number of studies reporting climate change-induced range shifts, few of these have incorporated species’ specific dispersal constraints into their models. Moreover, the impacts of climate change on genetic variation within populations and species have rarely been assessed, while this is a promising direction for future research. Here we explore the effects of climate change on the potential distribution and genetic variation of the endemic Pyrenean newt Calotriton asper over the period 2020–2080. We use species distribution modelling in combination with high-resolution gridded climate data while subsequently applying four different dispersal scenarios. We furthermore use published data on genetic variation of both mtDNA and AFLP loci to test whether populations with high genetic diversity (nucleotide diversity and expected heterozygosity) or evolutionary history (unique haplotypes and K clusters) have an increased extinction risk from climate change. The present study indicates that climate change drastically reduces the potential distribution range of C. asper and reveals dispersal possibilities to be minimal under the most realistic dispersal scenarios. Despite the major loss in suitable climate, the models highlight relatively large stable areas throughout the species core distribution area indicating persistence of populations over time. The results, however, show a major loss of genetic diversity and evolutionary history. This highlights the importance of accounting for intraspecific genetic variation in climate change impact studies. Likewise, the integration of species’ specific dispersal constraints into projections of species distribution models is an important step to fully explore the effects of climate change on species potential distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012) Genetic consequences of climate change for northern plants. Proc R Soc B 279:2042–2051. doi:10.1098/rspb.2011.2363

    Article  Google Scholar 

  • Anderson RP (2013) A framework for using niche models to estimate impacts of climate change on species distributions. Ann N Y Acad Sci 1297:8–28. doi:10.1111/nyas.12264

    Article  Google Scholar 

  • Angiletta MJ Jr (2009) Thermal adaption: a theoretical and empirical synthesis. Oxford University Press Inc, New York

    Book  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi:10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi:10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi:10.1111/j.1365-2699.2006.01482.x

    Article  Google Scholar 

  • Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318. doi:10.1038/nclimate1191

    Article  Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurence data in climate suitability models? Ecography 33:878–886. doi:10.1111/j.1600-0587.2010.06181.x

    Article  Google Scholar 

  • Bateman BL, Murphy HT, Reside AE, Mokany K, VanDerWal J (2013) Appropriateness of full-, partial-and no-dispersal scenarios in climate change impact modelling. Divers Distrib 19:1224–1234. doi:10.1111/ddi.12107

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146. doi:10.1111/j.1461-0248.2008.01231.x

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Böhme W, Grossenbacher K, Thiesmeier B (1999) Handbuch der Reptilien und amphibien Europas, band 4/I:Schwanzlurche (Urodela). Aula-Verlag, Wiesbaden

    Google Scholar 

  • Buckley LB (2008) Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat 171:E1–E19. doi:10.1086/523949

    Article  Google Scholar 

  • Buckley LB (2010) The range implications of lizard traits in changing environments. Glob Ecol Biogeogr 19:452–464. doi:10.1111/j.1466-8238.2010.00538.x

    Google Scholar 

  • Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054. doi:10.1111/j.1461-0248.2010.01479.x

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi:10.1111/j.1365-2486.2009.02000.x

    Article  Google Scholar 

  • Carranza S, Amat F (2005) Taxonomy, biogeography and evolution of (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zool J Linn Soc 145:555–582. doi:10.1111/j.1096-3642.2005.00197.x

    Article  Google Scholar 

  • Carvalho SB, Brito JC, Crespo EJ, Possingham HP (2010) From climate change predictions to actions—conserving vulnerable animal groups in hotspots at a regional scale. Glob Change Biol 16:3257–3270. doi:10.1111/j.1365-2486.2010.02212.x

    Article  Google Scholar 

  • Ceia-Hasse A, Sinervo B, Vicente L, Pereira HM (2014) Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 37:679–688. doi:10.1111/j.1600-0587.2013.00600.x

    Article  Google Scholar 

  • Coetzee BWT, Robertson MP, Erasmus BFN, Van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr 18:701–710. doi:10.1111/j.1466-8238.2009.00485.x

    Article  Google Scholar 

  • Colomer M, Montori A, García E, Fondevilla C (2014) Using a bioinspired model to determine the extinction risk of Calotriton asper populations as a result of an increase in extreme rainfall in a scenario of climatic change. Ecol Model 281:1–14. doi:10.1016/j.ecolmodel.2014.02.018

    Article  Google Scholar 

  • Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15(7):290–295

    Article  Google Scholar 

  • D’Amen M, Zimmermann NE, Pearman PB (2013) Conservation of phylogeographic lineages under climate change. Glob Ecol Biogeogr 22:93–104. doi:10.1111/j.1466-8238.2012.00774.x

    Article  Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786. doi:10.1038/35842

    Article  CAS  Google Scholar 

  • Drechsler A, Geller D, Freund K, Schmeller DS, Künzel S, Rupp O, Loyau A, Denoël M, Valbuena-Ureña E, Steinfartz S (2014) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina-based approaches. Ecol Evol 3:3947–3957. doi:10.1002/ece3.764

    Article  Google Scholar 

  • Dubey S, Pike DA, Shine R (2013) Predicting the impacts of climate change on genetic diversity in an endangered lizard species. Clim Change 117:319–327. doi:10.1007/s10584-012-0540-3

    Article  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15. doi:10.1038/hdy.2010.152

    Article  CAS  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range shifting species. Methods Ecol Evol 1:330–342. doi:10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63. doi:10.1016/j.tree.2013.09.008

    Article  Google Scholar 

  • Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601. doi:10.1111/j.1472-4642.2009.00566.x

    Article  Google Scholar 

  • Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package—seamless integration of dispersal constraints into projections of species distribution models. Ecography 35:872–878. doi:10.1111/j.1600-0587.2012.07608.x

    Article  Google Scholar 

  • Espíndola A, Pellissier L, Maiorano L, Hordijk W, Guisan A, Alvarez N (2012) Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol Lett 15:649–657. doi:10.1111/j.1461-0248.2012.01779.x

    Article  Google Scholar 

  • European Environment Agency (2013) Corine Land Cover 2006 raster data, version 17. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Foden WB, Butchart SHM, Stuart SN, Vie J-C, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD, Katariya V, Bernard R, Holland RA, Hughes AF, O’Hanlon SE, Garnett T, Şekercioğlu ÇH, Mace GM (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8:e65427. doi:10.1371/journal.pone.0065427

    Article  CAS  Google Scholar 

  • Fordham DA, Akçakaya HR, Araújo MB, Keith DA, Brook BW (2013) Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 36:956–964. doi:10.1111/j.1600-0587.2013.00147.x

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin J (2013) Species distribution models in conservation biogeography: developments and challenges. Divers Distrib 19:1217–1223. doi:10.1111/ddi.12125

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752

    Article  CAS  Google Scholar 

  • Giovanelli JGR, Ferreira de Siquera M, Haddad CFB, Alexandrini J (2010) Modelling a spatially restricted distribution in the neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecol Model 221:215–224. doi:10.1016/j.ecolmodel.2009.10.009

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi:10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Habel JC, Roedder D, Schmitt T, Neve G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Change Biol 17:194–205. doi:10.1111/j.1365-2486.2010.02233.x

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geog 30:751–777. doi:10.1177/0309133306071957

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29:773–785. doi:10.1111/j.0906-7590.2006.04700.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi:10.1038/nature09670

    Article  CAS  Google Scholar 

  • Hughes I (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi:10.1016/S0169-5347(99)01764-4

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either—or presence—absence. Acta Oecol 31:361–369. doi:10.1016/j.actao.2007.02.001

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131. doi:10.1890/03-0820

    Article  Google Scholar 

  • Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Cons Lett 3:203–213. doi:10.1111/j.1755-263X.2010.00097.x

    Article  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Cons Biol 1:143–158

    Article  Google Scholar 

  • Leimu R, Vergeer P, Angeloni F, Ouborg NJ (2010) Habitat fragmentation, climate change, and inbreeding in plants. Ann N Y Acad Sci 1195:84–98. doi:10.1111/j.1749-6632.2010.05450.x

    Article  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420. doi:10.1016/j.ecolmodel.2005.11.046

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • López-Moreno JI, Beniston M, García-Ruiz JM (2008a) Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Glob Planet Change 61(3):300–312

    Article  Google Scholar 

  • López-Moreno JI, Goyette S, Beniston M (2008b) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol 28:1535–1550. doi:10.1002/joc.1645

    Article  Google Scholar 

  • López-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374(3):384–396

    Article  Google Scholar 

  • Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681. doi:10.1007/s10592-006-9213-y

    Article  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331. doi:10.1046/j.1523-1739.2001.015002320.x

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Miaud C, Guillaume O (2005) Variation in age, body size and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61:241–249. doi:10.1655/04-29.1

    Article  Google Scholar 

  • Midgley GF, Davies ID, Albert CH, Altwegg R, Hannah L, Hughes GO, O’Halloran LR, Seo C, Thorne JH, Thuiller W (2010) BioMove—an integrated platform simulating the dynamic response of species to environmental change. Ecography 33:612–616. doi:10.1111/j.1600-0587.2009.06000.x

    Google Scholar 

  • Milá B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol Ecol 19:108–120. doi:10.1111/j.1365-294X.2009.04441.x

    Article  Google Scholar 

  • Montori A (1990) Skeletochronological results in the Pyrenean newt Euproctus asper (Dugès, 1852) from one prepyrenean population. Ann Sci Nat Zool 11:209–211

    Google Scholar 

  • Montori A, Llorente GA, Richter-Boix À (2008a) Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29:371–381

    Article  Google Scholar 

  • Montori A, Llorente GA, García-París M (2008b) Allozyme differentiation among populations of the Pyrenean newt Calotriton asper (Amphibia: Caudata) does not mirror their morphological diversification. Zootaxa 1945:39–50

    Google Scholar 

  • Montori A, Richter-Boix À, Franch M, Santos X, Garriga N, Llorente GA (2012) Natural fluctuations in a stream dwelling newt as a result of extreme rainfall: a 21-year survey of a Calotriton asper population. Basic Appl Herpetol 26:43–56

    Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Sys Biol 51(2):238–254

    Article  Google Scholar 

  • Oromi N, Amat F, Sanuy D, Carranza S (2014) Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper). Amphib Reptilia 35:53–62. doi:10.1163/15685381-00002921

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946. doi:10.1111/mec.12152

    Article  Google Scholar 

  • Peakall R, Lindenmayer D (2006) Genetic insights into population recovery following experimental perturbation in a fragmented landscape. Biol Conserv 132:520–532. doi:10.1016/j.biocon.2006.05.013

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Pfenninger M, Bálint M, Pauls SU (2012) Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol Biol 12:224. doi:10.1186/1471-2148-12-224

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Shapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Princeton

    Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569. doi:10.1111/j.1365-2486.2008.01766.x

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Article  CAS  Google Scholar 

  • Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43. doi:10.1098/rsbl.2008.0476

    Article  Google Scholar 

  • Sillero N, Campos J, Corti C, Creemers R, Crochet P-A, Crnobrnja Isailović J, Denoël M, Ficetola GF, Kuzmin S, Lymberakis P, de Pous P, Rodríguez A, Sindaco R, Speybroeck J, Toxopeus B, Vieites DR, Vences M (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib Reptilia 35:1–31. doi:10.1163/15685381-00002935

    Article  Google Scholar 

  • Sinervo B, Mendez-De-La-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi:10.1126/science.1184695

    Article  CAS  Google Scholar 

  • Staudinger MD, Grimm NB, Staudt A, Carter SL, Chapin III FS, Kareiva P, Ruckelshaus M, Stein BA (2012) Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical Input to the 2013 national climate assessment. cooperative report to the 2013 national climate assessment. p 296. http://assessment.globalchange.gov

  • Taubmann J, Theissinger K, Feldheim KA, Laube I, Graf W, Haase P, Johannesen J, Pauls SU (2011) Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12:503–515. doi:10.1007/s10592-010-0157-x

    Article  Google Scholar 

  • Temple HJ, Cox NA (2009) European red list of amphibians. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152. doi:10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araújo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. doi:10.1038/nature09705

    Article  CAS  Google Scholar 

  • Valbuena-Ureña E, Amat F, Carranza S (2012) Integrative phylogeography of Calotriton newts (Amphibia, Salamandridae), with special remarks on the conservation of the endangered Montseny brook newt (Calotriton arnoldi). PLoS One 8:e62542. doi:10.1371/journal.pone.0062542

    Article  Google Scholar 

  • Valbuena-Ureña E, Steinfartz S, Carranza S (2014) Characterization of microsatellite loci markers for the critically endangered Montseny brook newt (Calotriton arnoldi). Conserv Genet Res 6:263–265. doi:10.1007/s12686-013-0082-7

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence only distribution modelling, how far should we stray from what we know? Ecol Model 220:589–594. doi:10.1111/j.2041-210X.2011.00172.x

    Article  Google Scholar 

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278. doi:10.1111/mec.12310

    Article  Google Scholar 

  • Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, De Clerck O (2013) Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One 8:e68337. doi:10.1371/journal.pone.0068337

    Article  CAS  Google Scholar 

  • Vögeli M, Lemus JA, Serrano D, Blanco G, Tella JL (2011) An island paradigm on the mainland: host population fragmentation impairs the community of avian pathogens. Proc R Soc B 278:2668–2676. doi:10.1098/rspb.2012.1898

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. doi:10.1111/j.1600-0587.2009.06142.x

    Article  Google Scholar 

  • Wells KD (2007) The ecology and behaviour of amphibians. The University of Chicago Press, London

    Book  Google Scholar 

  • Wielstra B, Beukema W, Arntzen JW, Skidmore AK, Toxopeus AG, Raes N (2012) Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS One 7:e46671

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.d.P. is funded by a FI-DGR grant from the Generalitat de Catalunya, Spain (2014FI_B2 00197). DS is supported by the Ministerio de Ciencia e Innovación, Spain (CGL2009-12767-C02-01) and ENDESA Enterprise. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We would like to thank Lucienne Weber, Philippe Geniez, Matthieu Berroneau, Gilles Pottier and Bruno Le Roux for sharing crucial distribution data. This work was greatly improved following the reviewes of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip de Pous.

Additional information

Editor: Wolfgang Cramer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Null model to test for significance of the SDM created using 100 null distributions of random points in the study area. (JPEG 1381 kb)

Figure S2

MESS pictures of the projected SDMs for the period 2020–2080. Red areas in red have one or more environmental variables outside the range present in the training data. (JPEG 14449 kb)

Figure S3

MoD pictures of the projected SDMs for the period 2020–2080 showing the most dissimilar variable, i.e. the one that is furthest outside its training range. (JPEG 8445 kb)

Figure S4

Distribution of K clusters used for assessment of climate change on evolutionary history (JPEG 1505 kb)

Supplementary material 5 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Pous, P., Montori, A., Amat, F. et al. Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change. Reg Environ Change 16, 995–1009 (2016). https://doi.org/10.1007/s10113-015-0804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0804-3

Keywords

Navigation