Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

Abstract

Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alessa L, Kliskey A, Brown G (2008) Social-ecological hotspots mapping: a spatial approach for identifying coupled social-ecological space. Landsc Urban Plan 85:27–39. doi:10.1016/j.landurbplan.2007.09.007

    Article  Google Scholar 

  2. ARIES Consortium (2014) ARIES—Artificial Intelligence for Ecosystem Services. http://www.ariesonline.org/. Accessed 27 Jan 2014

  3. Bagstad KJ, Semmens DJ, Waage S, Winthrop R (2013a) A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 5:27–39. doi:10.1016/j.ecoser.2013.07.004

    Article  Google Scholar 

  4. Bagstad KJ, Semmens DJ, Winthrop R (2013b) Comparing approaches to spatially explicit ecosystem service modeling: a case study from the San Pedro River, Arizona. Ecosyst Serv 5:40–50. doi:10.1016/j.ecoser.2013.07.007

    Article  Google Scholar 

  5. Beverly JL, Uto K, Wilkes J, Bothwell P (2008) Assessing spatial attributes of forest landscape values: an internet-based participatory mapping approach. Can J For Res 38:289–303. doi:10.1139/X07-149

    Article  Google Scholar 

  6. Box GP, Cox DR (1964) An analysis of transformations. JR Stat Soc B26:211–252

    Google Scholar 

  7. Boykin KG, Kepner WG, Bradford DF, Guy RK, Kopp DA, Leimer AK, Samson EA, East NF, Neale AC, Gergely KJ (2013) A national approach for mapping and quantifying habitat-based biodiversity metrics across multiple spatial scales. Ecol Indic 33:139–147. doi:10.1016/j.ecolind.2012.11.005

    Article  Google Scholar 

  8. Brown G (2005) Mapping spatial attributes in survey research for natural resource management: methods and applications. Soc Nat Resour 18:17–39. doi:10.1080/08941920590881853

    Article  Google Scholar 

  9. Brown G (2012) Public Participation GIS (PPGIS) for regional and environmental planning: reflections on a decade of empirical research. URISA J 25(2):7–18. doi:10.1016/j.landurbplan.2012.06.007

    Google Scholar 

  10. Brown G (2013) The relationship between social values for ecosystem services and global land cover: an empirical analysis. Ecosyst Serv 5:58–68. doi:10.1007/s00267-010-9462-x

    Article  Google Scholar 

  11. Brown G, Brabyn L (2012) An analysis of the relationships between multiple values and physical landscapes at a regional scale using public participation GIS and landscape character classification. Landsc Urban Plan 107:317–331. doi:10.1016/j.landurbplan.2012.06.007

    Article  Google Scholar 

  12. Brown G, Pullar DV (2012) An evaluation of the use of points versus polygons in public participation geographic information systems using quasi-experimental design and Monte Carlo simulation. Int J Geogr Inf Sci 26(2):231–246. doi:10.1080/13658816.2011.585139

    Article  Google Scholar 

  13. Brown G, Reed P (2000) Validation of a forest values typology for use in National Forest planning. For Sci 46(2):240–247

    Google Scholar 

  14. Brown G, Reed P (2009) Public participation GIS: a new method for use in National Forest planning. For Sci 55(2):166–182

    Google Scholar 

  15. Brown G, Smith C, Alessa L, Kliskey A (2004) A comparison of perceptions of biological value with scientific assessment of biological importance. Appl Geogr 24(2):161–180. doi:10.1080/08941920.2011.621511

    Article  Google Scholar 

  16. Brown G, Montag JM, Lyon K (2012) Public Participation GIS: a method for identifying ecosystem services. Soc Nat Resour 25(7):633–651. doi:10.1080/08941920.2011.621511

    Article  Google Scholar 

  17. Bryan BA, Raymond CM, Crossman ND, King D (2011) Comparing spatially explicit ecological and social values for natural areas to identify effective conservation strategies. Conserv Biol 25(1):172–181. doi:10.1111/j.1523-1739.2010.01560

    Article  Google Scholar 

  18. Carver S, Watson A, Waters T, Matt R, Gunderson K, Davis B (2009) Developing computer-based participatory approaches to mapping landscape values for landscape and resource management. In: Geertman S, Stillwell J (eds) Planning support systems best practices and new methods. Springer, New York, pp 431–448. doi:10.1007/978-1-4020-8952-7_21

    Google Scholar 

  19. Chan KMA, Goldstein J, Satterfield T, Hannahs N, Kikiloi K, Naidoo R, Vadeboncoeur N, Woodside U (2011) Cultural services and non-use values. In: Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) Natural Capital: Theory and practice of mapping ecosystem services. Oxford University Press, Oxford, pp 207–228. doi:10.1525/bio.2012.62.8.7

    Google Scholar 

  20. Chan KMA, Satterfield T, Goldstein J (2012) Rethinking ecosystem services to better address and navigate cultural values. Ecol Econ 74:8–18. doi:10.1016/j.ecolecon.2011.11.011

    Article  Google Scholar 

  21. Clement JM, Cheng AS (2011) Using analyses of public value orientations, attitudes, and preferences to inform national forest planning in Colorado and Wyoming. Appl Geogr 31(2):393–400. doi:10.1016/j.apgeog.2010.10.001

    Article  Google Scholar 

  22. Cole Z (2012) Mapping social values of ecosystem services in Sarasota Bay, Florida: E-Delphi application, typology creation, and geospatial modeling. Ph.D dissertation, University of Florida, Gainesville

  23. Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, Pejchar L, Ricketts TH, Salzman J, Shallenberger R (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7(1):21–28. doi:10.1890/080025

    Article  Google Scholar 

  24. Daniel TC, Muhar A, Arnberger A, Aznar O, Boyd JW, Chan KMA, Costanza R, Elmqvist T, Flint CG, Gobster PH, Gret-Regamey A, Lave R, Muhar S, Penker M, Ribe RG, Schauppenlehner T, Sikor T, Soloviy I, Spiernburg M, Taczanowska K, Tam J, von der Dunk A (2012) Contributions of cultural services to the ecosystem services agenda. Proc Natl Acad Sci USA 109(23):8812–8819. doi:10.1073/pnas.1114773109

    CAS  Article  Google Scholar 

  25. Denver Water (2014) From Forests to Faucets: U.S. Forest Service and Denver Water Watershed Management Partnership. http://www.denverwater.org/supplyplanning/watersupply/partnershipuSFS/. Accessed 7 Jan 2014

  26. Donovan SM, Looney C, Hanson T, Sanchez de Leon Y, Wulfhorst JD, Eigenbrode SD, Jennings M, Johnson-Maynard J, Bosque Perez NA (2009) Reconciling social and biological needs in an endangered ecosystem: the Palouse as a model for bioregional planning. Ecol Soc 14(1):9

    Google Scholar 

  27. Dunn CE (2007) Participatory GIS a people’s GIS? Prog Hum Geogr 31(5):616–637. doi:10.1177/0309132507081493

    Article  Google Scholar 

  28. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  29. ESP Maps (2014) The ecosystem services partnership visualization tool: an interactive knowledge platform for ecosystem service maps. http://esp-mapping.net/Home/. Accessed 28 Jan 2014

  30. Evans AJ, Waters T (2008) Mapping vernacular geography: web-based GIS tools for capturing “fuzzy” or “vague” entities. Int J Technol Policy Manage 7(2):134–150. doi:10.1504/IJTPM.2007.014547

    Article  Google Scholar 

  31. Fagerholm N, Käyhkö N, Ndumbaro F, Khamis M (2012) Community stakeholders’ knowledge in landscape assessments-Mapping indicators for landscape services. Ecol Indic 18:421–433. doi:10.1016/j.ecolind.2011.12.004

    Article  Google Scholar 

  32. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206. doi:10.1111/j.1538-4632.1992.tb00261.x

    Article  Google Scholar 

  33. Grêt-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner U (2014) On the effects of scale for ecosystem services mapping. PLoS ONE 9(12):112601. doi:10.1371/journal.pone.0112601

    Article  Google Scholar 

  34. Hermans C, Erickson JD (2007) Multicriteria decision analysis: overview and implications for environmental decision making. In: Erickson JD, Messner F, Ring I (eds) Ecological economics of sustainable watershed management. Elsevier, Amsterdam, pp 213–228. doi:10.1093/acprof:oso/9780199588992.001.0001

    Google Scholar 

  35. Ives CD, Kendal D (2014) The role of social values in the management of ecological systems. J Environ Manage 144:67–72. doi:10.1016/j.jenvman.2014.05.013

    Article  Google Scholar 

  36. Kandziora M, Burkhard B, Müller F (2013) Mapping provisioning ecosystem services at the local scale using data of varying spatial and temporal resolution. Ecosystem Services 4:47–59. doi:10.1016/j.ecoser.2013.04.001

    Article  Google Scholar 

  37. Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) (2011) Natural Capital: theory and practice of mapping ecosystem services. Oxford University Press, Oxford

    Google Scholar 

  38. Klain SC, Chan KMA (2012) Navigating coastal values: participatory mapping of ecosystem services for spatial planning. Ecol Econ 82:104–113. doi:10.1016/j.ecolecon.2012.07.008

    Article  Google Scholar 

  39. Manning RE (2011) Studies in outdoor recreation: search and research for satisfaction, 3rd edn. Oregon State University Press, Corvallis

    Google Scholar 

  40. Martinez-Harms MJ, Balvanera P (2012) Methods for mapping ecosystem service supply: a review. Int J Biodivers Sci Ecosyst Serv Manag 8(1–2):17–25. doi:10.1080/21513732.2012.663792

    Article  Google Scholar 

  41. McIntyre N, Moore J, Yuan M (2008) A place-based, values-centered approach to managing recreation on Canadian crown lands. Soc Nat Resour 21:657–670. doi:10.1080/08941920802022297

    Google Scholar 

  42. Millennium Ecosystem Assessment (MA) (2005) Millennium ecosystem assessment: living beyond our means—natural assets and human well-being. World Resour Inst, Washington, DC

    Google Scholar 

  43. Plieninger T, Dijks S, Oteros-Rozas E, Bieling C (2013) Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 33:118–129. doi:10.1016/j.landusepol.2012.12.013

    Article  Google Scholar 

  44. Pocewicz A, Nielsen-Pincus M, Brown G, Schnitzer R (2012) An evaluation of internet versus paper-based methods for Public Participation Geographic Information Systems (PPGIS). Trans GIS 16(1):39–53. doi:10.1111/j.1467-9671.2011.01287.x

    Article  Google Scholar 

  45. Raymond C, Brown G (2011) Assessing spatial associations between perceptions of landscape value and climate change risk for use in climate change planning. Clim Change 104:653–678. doi:10.1007/s10584-010-9806-9

    Article  Google Scholar 

  46. Raymond C, Bryan BA, MacDonald DH, Cast A, Strathearn S, Grandgirard A, Kalivas T (2009) Mapping community values for natural capital and ecosystem services. Ecol Econ 68:1301–1315. doi:10.1016/j.ecolecon.2008.12.006

    Article  Google Scholar 

  47. Raymond CM, Singh G, Benessaiah K, Bernhard JR, Levine J, Nelson H, Turner NJ, Norton B, Tam J, Chan K (2013) Ecosystem services and beyond: using multiple metaphors to understand human–environment relationships. Bioscience 63(7):536–546. doi:10.1525/bio.2013.63.7.7

    Article  Google Scholar 

  48. Rolston H, Coufal J (1991) A forest ethic and multivalue forest management. J For 89:35–40

    Google Scholar 

  49. Ruhl JB, Kraft SE, Lant CL (2007) The law and policy of ecosystem services. Island Press, Washington, DC

    Google Scholar 

  50. Ruiz-Frau A, Edwards-Jones G, Kaiser MJ (2011) Mapping stakeholder values for coastal zone management. Mar Ecol Prog Ser 434:239–249. doi:10.3354/meps09136

    Article  Google Scholar 

  51. Schwartz N (1999) Self-reports: how the questions shape the answers. Am Psychol 54:93–105. doi:10.1037//0003-066X.54.2.93

    Article  Google Scholar 

  52. Sherrouse BC, Semmens DJ (2012) Social Values for Ecosystem Services, Version 2.0 (SolVES 2.0): documentation and user manual. U.S. Geological survey open file report 2012–1023

  53. Sherrouse BC, Semmens DJ (2014) Validating a method for transferring social values of ecosystem services between public lands in the Rocky Mountain region. Ecosyst Serv 8:166–177. doi:10.1016/j.ecoser.2014.03.008

    Article  Google Scholar 

  54. Sherrouse BC, Clement JM, Semmens DJ (2011) A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Appl Geogr 31:748–760. doi:10.1016/j.apgeog.2010.08.002

    Article  Google Scholar 

  55. Sherrouse BC, Semmens DJ, Clement JM (2014) An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol Indic 36:68–79. doi:10.1016/j.ecolind.2013.07.008

    Article  Google Scholar 

  56. Sieber R (2006) Public participation geographic information systems: a literature review and framework. Ann Assoc Am Geogr 96(3):491–507. doi:10.1111/j.1467-8306.2006.00702.x

    Article  Google Scholar 

  57. Tallis H, Polasky S (2011) How much information do managers need? The sensitivity of ecosystem service decisions to model complexity. In: Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) Natural Capital: theory and practice of mapping ecosystem services. Oxford University Press, Oxford, pp 264–277. doi:10.1093/acprof:oso/9780199588992.001.0001

    Google Scholar 

  58. U.K. National Ecosystem Assessment (2011) The U.K. National Ecosystem Assessment: synthesis of key findings. UNEP-WCMC, Cambridge

    Google Scholar 

  59. U.S. Department of Agriculture (USDA) (2012) USDA forest service, Pike and San Isabel National Forests, Cimarron and Comanche National Grasslands. http://www.fs.usda.gov/psicc/. Accessed 19 Sept 2013

  60. van Riper CJ, Kyle GT, Sutton SG, Barnes M, Sherrouse BC (2012) Mapping outdoor recreationists’ perceived social values for ecosystem services at Hinchinbrook Island National Park, Australia. Appl Geogr 35:164–173. doi:10.1016/j.apgeog.2012.06.008

    Article  Google Scholar 

  61. Villa F, Bagstad KJ, Voigt B, Johnson G, Portela R, Honzak M, Batker D (2014) A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 9(3):e91001. doi:10.1371/journal.pone.0091001

    Article  Google Scholar 

  62. Watson AE, Venn T (2012) Wilderness ecosystem services: a focus on applications. Int J Wilderness 18(3):3

    Google Scholar 

  63. Whitehead AL, Kujala H, Ives CD, Gordon A, Lentini PE, Wintle BA, Nicholson E, Raymond C (2014) Integrating biological and social values when prioritizing places for biodiversity conservation. Conserv Biol 28(4):992–1003. doi:10.1111/cobi.12257

    Article  Google Scholar 

  64. Zhu X, Pfueller S, Whitelaw P, Winter C (2010) Spatial differentiation of landscape values in the Murray River region of Victoria, Australia. Environ Manage 45(5):896–911. doi:10.1007/s00267-010-9462-x

    Article  Google Scholar 

Download references

Acknowledgments

Partial support for this work was provided by the U.S. Geological Survey’s Mendenhall Postdoctoral Research, Land Change Science, and YouthGo programs. Zach Ancona and Brian Voigt assisted with development of viewshed results, and Ferdinando Villa and Gary Johnson assisted with ARIES models. Carena van Riper and Alan Watson provided constructive feedback on earlier drafts of this paper. Initial ARIES data and models for the Southern Rocky Mountains were developed by students participating in a graduate level ecosystem services modeling course taught in the University of Denver’s Department of Geography in the fall of 2011. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Bagstad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagstad, K.J., Reed, J.M., Semmens, D.J. et al. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains. Reg Environ Change 16, 2005–2018 (2016). https://doi.org/10.1007/s10113-015-0756-7

Download citation

Keywords

  • ARIES
  • Cultural ecosystem services
  • Hotspot analysis
  • Modeling
  • Social values
  • SolVES