Regional Environmental Change

, Volume 16, Issue 7, pp 1963–1973 | Cite as

Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus)

  • Carlos JiménezEmail author
  • Louis Hadjioannou
  • Antonis Petrou
  • Andreas Nikolaidis
  • Marina Evriviadou
  • Manfred A. Lange
Original Article


A mortality event of Cladocora caespitosa corals and the extent of bleaching, necrosis and pigmented areas in the colonies were studied at the southeastern coast of Cyprus during a prolonged period of higher than average sea temperature anomalies (summer/autumn 2012). With the use of scuba diving and image analysis software, we monitored the extent of mortality of 29 colonies of C. caespitosa by measuring and comparing the area percentage of healthy tissue, affected tissue (bleached, necrotic) and older mortality events (encrusted skeleton). In September 2012, on average, 24 % of the colonies surface area was affected (bleaching and/or necrosis). In October 2012, C. caespitosa showed on average 26.3 % of the colony surface area affected, evidence of continuing deterioration. At the same time, 10 % (3 of 29) of the colonies showed an increase in the pigmentation of previously bleached polyps in small and marginal areas (6–8 %). Irrespective of the amount, the regaining of pigments recorded is considered an important find. Corals and marine organisms in general in the Levantine Sea are affected greatly by warming events, to the extent where a very small percentage of polyps/colonies show resilience under thermal stress. Natural bleaching of C. caespitosa, even though limited to a few colonies and very small portions of tissue/polyps, was documented for the first time in the Levantine Sea. We conclude that temperature anomalies are associated with the mortality event. Whether prolonged higher temperature is the direct cause, or whether it acts synergistically with other factors should be the subject of further investigations.


Levantine Sea Climate change Ecological impacts Coral Coral bleaching Cladocora caespitosa 



The authors are grateful to AP Marine Environmental Consultancy Ltd for providing their vessel, diving equipment and their kind support with the logistics of the fieldwork. Thanks to Helmut Zibrowius and Diego Kersting for constructive advice and to Keith Walker as well as the whole group of divers who responded to our call for temperature readings and reports of dying corals from around the island. We are also grateful to A.A.K. Larnaca Napa Sea Cruises for taking us on board to visit study sites and to Viking Divers and Alpha Divers for providing valuable information. Thanks to the editors for the invitation to submit the manuscript and two anonymous reviewers for their constructive suggestions that improved the paper.


  1. Airi V, Gizzi F, Falini G, Levy O, Dubinsky Z, Goffredo S (2014) Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient. PLoS One 9(3):e91792. doi: 10.1371/journal.pone.0091792 CrossRefGoogle Scholar
  2. Armoza-Zvuloni R, Segal R, Kramarsky-Winter E, Loya Y (2011) Repeated bleaching events may result in high tolerance and notable gametogenesis in stony corals: Oculina patagonica as a model. Mar Ecol Progr Ser 426:149–159. doi: 10.3354/meps09018 CrossRefGoogle Scholar
  3. Ben-Haim Y, Banin E, Kushmaro A, Loya Y, Rosenberg E (1999) Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environ Microbiol 1:223–229. doi: 10.1046/j.1462-2920.1999.00027.x CrossRefGoogle Scholar
  4. Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662. doi: 10.1038/347660a0 CrossRefGoogle Scholar
  5. Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7:e34418. doi: 10.1371/journal.pone.0034418 CrossRefGoogle Scholar
  6. Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2012a) Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient. Front Zool 9:32. doi: 10.1186/1742-9994-9-32 CrossRefGoogle Scholar
  7. Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012b) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7(6):e37848. doi: 10.1371/journal.pone.0037848 CrossRefGoogle Scholar
  8. Casado-Amezua P, Garcia-Jimenez R, Kersting DK, Templado J, Coffroth MA, Merino P, Acevedo I, Machordom A (2011) Development of microsatellite markers as a molecular tool for conservation studies of the Mediterranean reef builder coral Cladocora caespitosa (Anthozoa, Scleractinia). J Hered 102:622–626. doi: 10.1093/jhered/esr070 CrossRefGoogle Scholar
  9. Cattaneo-Vietti R, Chemello R, Giannuzzi-Savelli R (1990) Atlas of Mediterranean Nudibranchs. La Conchiglia, Roma, p 264Google Scholar
  10. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett 3:284–293. doi: 10.1046/j.1461-0248.2000.00152.x CrossRefGoogle Scholar
  11. Chong-Seng K, Cole A, Pratchett M, Willis B (2011) Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs 30:473–481. doi: 10.1007/s00338-010-0707-1 CrossRefGoogle Scholar
  12. Cole A, Chong Seng K, Pratchett M, Jones G (2009) Coral-feeding fishes slow progression of black-band disease. Coral Reefs 28:965. doi: 10.1007/s00338-009-0519-3 CrossRefGoogle Scholar
  13. Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais F, Aguzzi J, Ballesteros E, Bianchi C, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M, Koukouras A, Lampadariou N, Laxamana E, López-Fé CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e1184. doi: 10.1371/journal.pone.0011842 CrossRefGoogle Scholar
  14. Crisci C, Bensoussan N, Romano J-C, Garrabou J (2011) Temperature anomalies and mortality events in marine communities: insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS One 6(9):e23814. doi: 10.1371/journal.pone.0023814 CrossRefGoogle Scholar
  15. Di Natale A (1978) Ulteriore segnalazione di Quoyula madreporarum (Sowerby, 1832) (Mollusca, Gastropoda) nel Mediterraneo. Memorie di Biologia Marina e di Oceanografia 8:151–154Google Scholar
  16. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969. doi: 10.1371/journal.pone.0013969 CrossRefGoogle Scholar
  17. Fine M, Banin-Israely T, Rosenberg E, Loya Y (2002) Ultraviolet radiation prevents bleaching in the Mediterranean coral Oculina patagonica. Mar Ecol Progr Ser 226:249–254. doi: 10.3354/meps226249 CrossRefGoogle Scholar
  18. Garrabou J, Coma R, Bally M, Bensoussan N, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Change Biol 15:1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x CrossRefGoogle Scholar
  19. Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509. doi: 10.1111/j.1365-2486.1996.tb00063.x CrossRefGoogle Scholar
  20. Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, London, pp 68–95CrossRefGoogle Scholar
  21. Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. Bull Mar Sci 87:767–794. doi: 10.5343/bms.2010.1025 CrossRefGoogle Scholar
  22. Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution and predators. Geol Rundsch 61:483–519. doi: 10.1007/BF01896330 CrossRefGoogle Scholar
  23. Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Mar Biol 152:351–361. doi: 10.1007/s00227-007-0695-z CrossRefGoogle Scholar
  24. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632. doi: 10.1007/s00338-008-0362-y CrossRefGoogle Scholar
  25. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937. doi: 10.4319/lo.2009.54.3.0930 CrossRefGoogle Scholar
  26. Haguenauer A, Zuberer F, Ledoux JB, Aurelle D (2013) Adaptive abilities of the Mediterranean red coral Corallium rubrum in an heterogeneous and changing environment: from population to functional genetics. J Exp Mar Biol Ecol 449:349–357. doi: 10.1016/j.jembe.2013.10.010 CrossRefGoogle Scholar
  27. Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, irradiance and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper 1797) and Seriatopora hystrix (Dana 1846). J Exp Mar Biol Ecol 129:279–303. doi: 10.1016/0022-0981(89)90109-3 CrossRefGoogle Scholar
  28. Houbrick RS (1992) Monograph of the genus Cerithium Bruguiere in the Indo-Pacific (Cerithiidae: Prosobranchia). Smithson Contrib Zool 510. doi: 10.5479/si.00810282.510
  29. Jiménez C, Cortés J (2003) Coral cover change associated to El Niño, eastern Pacific, 1992–2001. Mar Ecol 24:179–192. doi: 10.1046/j.1439-0485.2003.03814.x CrossRefGoogle Scholar
  30. Jiménez IM, Larkum AWD, Ralph PJ, Kuhl M (2012) In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Mar Biol 159:1773–1782. doi: 10.1007/s00227-012-1968-8 CrossRefGoogle Scholar
  31. Jiménez C, Petrou A, Ivan C, Marija D, Evriviadou M, Hadjioanou L, Lange MA (2013a) Coral mass mortality associated to seawater temperature anomalies in the Levantine (Cyprus) and Adriatic (Croatia) Seas. Rapp Comm Int Mer Médit 40:655Google Scholar
  32. Jiménez C, Petrou A, Evrivadou M, Nikolaides A, Hadjioanou A, Lange MA (2013b) Coral mass mortality associated to the Summer 2012 seawater temperature anomalies in the Levantine Sea (Cyprus). Geophys Res Abstr 15:8021Google Scholar
  33. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci 275:1359. doi: 10.1098/rspb.2008.0069 CrossRefGoogle Scholar
  34. Kersting DK, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436. doi: 10.1111/j.1439-0485.2011.00508.x CrossRefGoogle Scholar
  35. Kersting DK, Bensoussan N, Linares C (2013) Long-term responses of the endemic reef-builder Cladocora caespitosa to Mediterranean warming. PLoS One 8:e70820. doi: 10.1371/journal.pone.0070820 CrossRefGoogle Scholar
  36. Krom MD, Kress N, Brenner S, Gordon LI (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean-Sea. Limnol Oceanogr 36:424–432. doi: 10.4319/lo.1991.36.3.0424 CrossRefGoogle Scholar
  37. Kružić P (2014) Bioconstructions in the Mediterranean: present and future. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, pp 435–448. doi: 10.1007/978-94-007-6704-1
  38. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536. doi: 10.1007/s00338-003-0345-y CrossRefGoogle Scholar
  39. Kružić P, Srsen P, Benkovic L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa: Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491. doi: 10.1007/s10347-012-0306-4 CrossRefGoogle Scholar
  40. Kružić P, Srsen P, Cetinic K, Zavodnik D (2013) Coral tissue mortality of the coral Cladocora caespitosa caused by gastropod Coralliophila meyendorffi in the Mljet National Park (eastern Adriatic Sea). J Mar Biol Assoc UK 93:2101–2108. doi: 10.1017/S0025315413000878 CrossRefGoogle Scholar
  41. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 171:131–137. doi: 10.3354/meps171131 CrossRefGoogle Scholar
  42. Macias D, Garcia-Gorriz E, Stips A (2013) Understanding the causes of recent warming of Mediterranean waters. How much could be attributed to climate change? PLoS One 8:e81591. doi: 10.1371/journal.pone.0081591 CrossRefGoogle Scholar
  43. Miller M, Williams DE (2007) Coral disease outbreak at Navassa, a remote Caribbean island. Coral Reefs 26:97–101. doi: 10.1007/s00338-006-0165-y CrossRefGoogle Scholar
  44. Morton B, Blackmore G, Kwok CT (2002) Corallivory and prey choice by Drupella rugosa Gastropoda Muricidae in Hong Kong. J Moll Stud 683:217–223. doi: 10.1093/mollus/68.3.217 CrossRefGoogle Scholar
  45. Nicolet KJ, Hoogenboom MO, Gardiner NM, Pratchett MS, Willis BL (2013) The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef. Coral Reefs 32:585–595. doi: 10.1007/s00338-013-1010-8 CrossRefGoogle Scholar
  46. Oliverio M, Taviani M, Chemello R (1997) A coral-associated epitoniid, new to the Red Sea (Prosobranchia, Ptenoglossa). Argonauta 9(10–12):3–10Google Scholar
  47. Oliverio M, Barco A, Modica MV, Richter A, Mariottini P (2009) Ecological barcoding of corallivory by second internal transcribed spacer sequences: hosts of coralliophiline gastropods detected by the cnidarian DNA in their stomach. Mol Ecol Resour 9:94–103. doi: 10.1111/j.1755-0998.2008.02388.x CrossRefGoogle Scholar
  48. Onton K, Page CA, Wilson SK, Neale S, Armstrong S (2011) Distribution and drivers of coral disease at Ningaloo reef, Indian Ocean. Mar Ecol Prog Ser 433:75–84. doi: 10.3354/meps09156 CrossRefGoogle Scholar
  49. Oreskes N (2004) The scientific consensus on climate change. Science 307:355. doi: 10.1126/science.1103618 Google Scholar
  50. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orru P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40:195–200. doi: 10.1016/S0921-8181(03)00110-3 CrossRefGoogle Scholar
  51. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J (2000) Mass mortality of marine invertebrates: an unprecedented event in the Northwestern Mediterranean. CR Acad Sci Paris III 323:853–865. doi: 10.1016/S0764-4469(00)01237-3 CrossRefGoogle Scholar
  52. Por FD (1978) Lessepsian migration: the influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Ecol Stud 23. Springer, pp 228. doi:  10.1002/iroh.19800650224
  53. Reynolds WR, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948. doi: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2 CrossRefGoogle Scholar
  54. Richter A, Luque AA (2004a) Sex change in two Mediterranean species of Coralliophilidae (Mollusca: Gastropoda: Neogastropoda). J Mar Biol Assoc UK 84:383–392. doi: 10.1017/S0025315404009324h CrossRefGoogle Scholar
  55. Richter A, Luque AA (2004b) Epitonium dendrophylliae (Gastropoda: Epitoniidae) feeding on Astroides calycularis (Anthozoa, Scleractinia). J Moll Stud 70:99–101. doi: 10.1093/mollus/70.1.99 CrossRefGoogle Scholar
  56. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24. doi: 10.1007/s003380050221 CrossRefGoogle Scholar
  57. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool (Modena) 72:271–276. doi: 10.1080/11250000509356685 CrossRefGoogle Scholar
  58. Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Page C (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55. doi: 10.1007/s00227-006-0329-x CrossRefGoogle Scholar
  59. Rodolfo-Metalpa R, Martin S, Ferrier-Page C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300. doi: 10.5194/bg-7-289-2010 CrossRefGoogle Scholar
  60. Rodolfo-Metalpa R, Hoogenboom MO, Rottier C, Ramos-Espla A, Baker AC, Fine M, Ferrier-Pages C (2014) Thermally tolerant corals have limited capacity to acclimatize to future warming. Glob Chang Biol. doi: 10.1111/gcb.12571 Google Scholar
  61. Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. doi: 10.3354/meps07531 CrossRefGoogle Scholar
  62. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269. doi: 10.1038/40843 CrossRefGoogle Scholar
  63. Saledhoust A, Negarestan H, Jami MJ, Morton B (2011) Corallivorous snails: first record of corallivory by Ergalatax junionae (Gastropoda: Muricidae) in the Persian Gulf. Mar Biodivers Rec 4:e99. doi: 10.1017/S1755267211000777 CrossRefGoogle Scholar
  64. Salinger MJ (2005) Climate variability and change: past, present and future: an overview. In: Salinger J, MVK Sivakumar, RP Motha (eds) Increasing climate variability and change. Springer, pp 9–29. doi: 10.1007/1-4020-4166-7_3
  65. Samuel-Rhoads Y, Zodiatis G, Hayes D, Georgiou G (2009) Mediterranean Sea surface temperature rise: 1985–2008. MED-Coast 09 Proc (
  66. Samuel-Rhoads Y, Ioan I, Zodiatis G, Stylianou S, Hayes D, Georgiou G (2010) Sea surface temperature and salinity rise in the Levantine basin. Rapp Comm Int Mer Médit 39:177Google Scholar
  67. Schiller C (1993) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. Energy Budg Mar Ecol 14:221–238. doi: 10.1111/j.1439-0485.1993.tb00481.x CrossRefGoogle Scholar
  68. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  69. Shafir S, Gur O, Rinkevich B (2008) A Drupella cornus outbreak in the northern Gulf of Eilat and changes in coral prey. Coral Reefs 27:379. doi: 10.1007/s00338-008-0353-z CrossRefGoogle Scholar
  70. Shenkar N, Fine M, Kramarsky-Winter E, Loya Y (2006) Population dynamics of zooxanthellae during a bacterial bleaching event. Coral Reefs 25:223–227. doi: 10.1007/s00338-006-0090-0 CrossRefGoogle Scholar
  71. Spada G (1968) Osservazioni sull’habitat della Coralliophila (Babelomurex) babelis Requien, 1848. Conchiglie 4:170–176Google Scholar
  72. Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ Microbiol 5:250–255. doi: 10.1046/j.1462-2920.2003.00424.x CrossRefGoogle Scholar
  73. Tanaka T, Zohary T, Krom MD, Law CS, Pitta P, Psarra S et al (2007) Microbial community structure and function in the Levantine Basin of the eastern Mediterranean. Deep Sea Res I 54:1721–1743. doi: 10.1016/j.dsr.2007.06.008 CrossRefGoogle Scholar
  74. Tornaritis G (1987) Mediterranean Sea shells: Cyprus. Proodos, Nicosia, Cyprus, p 190Google Scholar
  75. Torres JL, Armstrong RA, Weil E (2008) Enhanced ultraviolet radiation can terminate sexual reproduction in a Caribbean broadcasting species. J Exp Mar Biol Ecol 358:39–45. doi: 10.1016/j.jembe.2008.01.022 CrossRefGoogle Scholar
  76. Torres-Pérez JL, Armstrong RA (2012) Effects of UV radiation on the growth, photosynthetic and photoprotective components, and reproduction of the Caribbean shallow-water coral Porites furcata. Coral Reefs 31:1077–1091. doi: 10.1007/s00338-012-0927-7 CrossRefGoogle Scholar
  77. Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen JH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148. doi: 10.3354/meps314135 CrossRefGoogle Scholar
  78. Vargas-Yanez M, Garcia M, Salat J, Garcia-Martinez M, Pascual J, Moya F (2008) Warming trends and decadal variability in the Western Mediterranean shelf. Glob Planet Change 63:177–184. doi: 10.1016/j.gloplacha.2007.09.001 CrossRefGoogle Scholar
  79. Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283. doi: 10.1017/S0025315406014299 CrossRefGoogle Scholar
  80. Wilkinson CR (1998) The 1997–1998 mass bleaching event around the world. In: Wilkinson CR (ed) Status of coral reefs of the world. Australian Institute of Marine Science, Cape Ferguson, pp 15–38.
  81. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr Monaco 11:1–284Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carlos Jiménez
    • 1
    • 2
    Email author
  • Louis Hadjioannou
    • 2
  • Antonis Petrou
    • 2
  • Andreas Nikolaidis
    • 3
    • 4
  • Marina Evriviadou
    • 1
    • 2
  • Manfred A. Lange
    • 1
  1. 1.Energy, Environment, Water Research Centre (EEWRC)The Cyprus InstituteNicosiaCyprus
  2. 2.Enalia Physis Environmental Research Centre (EPERC)NicosiaCyprus
  3. 3.Oceanography CenterUniversity of CyprusNicosiaCyprus
  4. 4.Department of Civil Engineering and GeomaticsCyprus University of TechnologyLimassolCyprus

Personalised recommendations