Regional Environmental Change

, Volume 15, Issue 3, pp 505–515 | Cite as

Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications

  • Virginia Ruiz-Villanueva
  • Markus Stoffel
  • Gianbattista Bussi
  • Félix Francés
  • Christian Bréthaut
Original Article


We assess possible modifications in the hydrological behaviour of the Rhone River and its tributaries at Lyon (France). We identify changes during the late-twentieth century based on observations and characterise potential impacts of climatic changes on river response by the end of the century. Different scenarios of the latest generation of IPCC AR5 CMIP5 and hydrological modelling were used and included two scenarios for future outlet discharge of Lake Geneva (Switzerland). We show that discharges in the Rhone basin are likely to decrease significantly by the end of the century and that the seasonality of run-off will change substantially as well. In addition, projections point to smaller discharge during low flows, but higher low flows in its sub-basins. Regarding floods, high flows exhibit a general tendency to decrease, whereas potential upwards can be observed for the more extreme floods (less frequent). The approach reported in this paper will help to reflect on the governance modalities of a transboundary river such as the Rhone, especially when water management depends on concession contracts, which are usually granted for several decades and typically last between 60 and 90 years.


Climate change Water resources Floods Droughts River management Rhone River 



This work has been realised within the GOUVRHONE—hydropower and the regulation of the Rhone River in a context of climate change and electricity liberalisation project and was funded by the French Ministry of Ecology, the French Water Agency Rhone Méditerranée and Corse, the Swiss Federal Office for the Environment, the cantons of Geneva and Vaud, the Services Industriels de Genève and Electricité de France. The authors acknowledge the substantial support and feedback of Christophe Corona, Samuel Morin, Xavier Rodriguez Lloveras, Mario Rohrer and Annina Sorg.

Supplementary material

10113_2014_707_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2984 kb)


  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56 FAO Rome, ItalyGoogle Scholar
  2. Beniston M (2012) Impacts of climatic change on water and associated economic activities in the Swiss Alps. J Hydrol 412–413:291–296. doi: 10.1016/j.jhydrol.2010.06.046 CrossRefGoogle Scholar
  3. Beniston M, Stoffel M (2013) Assessing the impacts of climatic change on mountain water resources. Sci Total Environ. doi: 10.1016/j.scitotenv.2013.11.122 Google Scholar
  4. Beniston M, Stoffel M, Hill M (2011) Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? examples from the European “ACQWA” project. Environ Sci Policy 14(7):734–743. doi: 10.1016/j.envsci.2010.12.009 CrossRefGoogle Scholar
  5. Boé J, Habets F (2014) Multi-decadal river flow variations in France. Hydrol Earth Syst Sci 18:691–708CrossRefGoogle Scholar
  6. Bréthaut C, Pflieger G (2013) The shifting territorialities of the Rhone River’s transboundary governance: a historical analysis of the evolution of the functions, uses and spatiality of river basin governance. Reg Environ Change. doi: 10.1007/s10113-013-0541-4 Google Scholar
  7. Bussi G, Frances F, Horel E, Lopez-Tarazon JA, Batalla RJ (2014) Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. J Soils Sediments. doi: 10.1007/s11368-014-0956-7 Google Scholar
  8. Demaria EMC, Maurer EP, Thrasher B, Vicuña S, Meza FJ (2013) Climate change impacts on an alpine watershed in Chile: do new model projections change the story? J Hydrol 502:128–138CrossRefGoogle Scholar
  9. Deneux M (2002) Rapport sur l’évaluation de l’ampleur des changements climatiques, de leurs causes et de leur impact prévisible sur la géographie de la France à l’horizon 2025, 2050 et 2100. Office parlementaire d’évaluation des choix scientifiques et technologiques, Paris 291 pGoogle Scholar
  10. Etchevers P (2002) Impact of a climate change on the Rhone river catchment hydrology. J Geophys Res 107(D16):4293. doi: 10.1029/2001JD000490 CrossRefGoogle Scholar
  11. Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332:226–240CrossRefGoogle Scholar
  12. Giuntoli I, Renard B, Vidal JP, Bard A (2013) Low flows in France and their relationship to large-scale climate indices. J Hydrol 482:105–118CrossRefGoogle Scholar
  13. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2013) Twenty-first century climate change in the European Alps-A review. Sci Total Environ. doi: 10.1016/j.scitotenv.2013.07.050 Google Scholar
  14. Hannaford J, Buys G, Stahl K, Tallaksen LM (2013) The influence of decadal-scale variability on trends in long European streamflow records. Hydrol Earth Syst Sci 17:2717–2733CrossRefGoogle Scholar
  15. Helsel DR, Frans LM (2006) Regional Kendall test for trend. Environ Sci Technol 1:4066–4073CrossRefGoogle Scholar
  16. Hurkmans et al (2010) Changes in streamflow dynamics in the Rhine Basin under three high-resolution regional climate scenarios. Am Meteorol Soc. doi: 10.1175/2009JCLI3066.1 Google Scholar
  17. Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour Res. doi: 10.1029/2010WR010299 Google Scholar
  18. Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22:3888–3902CrossRefGoogle Scholar
  19. Husting P, Jouzel J, Le Treut H (eds) (2005) Changements climatiques, quels impacts en France. Greenpeace, Paris, p 139Google Scholar
  20. Moss T, Jens N (2010) Multilevel water governance and problems of scale: setting the stage for a broader debate. Environ Manag 46(1):1–6CrossRefGoogle Scholar
  21. Nakicenovic N, Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Rovere ELL, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) Special report on emissions scenarios, international panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  23. Notebaert B, Piegay H (2013) Multi-scale factors controlling the pattern of floodplain width at a network scale: the case of the Rhône basin. Geomorphology, France. doi: 10.1016/j.geomorph.2013.03.014 Google Scholar
  24. Panagos P (2006) The European soil database. GEO: connexion 5(7):32–33Google Scholar
  25. Pardé M (1933) Le régime des cours d’eau de l’Europe orientale (en collaboration avec St.Kolupaila). Revue Geographie Alpine, T.XXI (IV), pp. 651–748Google Scholar
  26. Quintana-Seguí P, Le Moigne Y, Durand E, Martin F, Habets M, Baillon C, Canellas L, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107Google Scholar
  27. Rahman K, Maringanti C, Beniston M, Widmer F, Abbaspour K, Lehmann A (2012) Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: the upper Rhone River watershed case in Switzerland. Water Resour Manag. doi: 10.1007/s11269-012-0188-9
  28. Redaud JL, Noilhan J, Gillet M, Huc M, Begni G (2002) Changement climatique et impact sur le regime des eaux en France. Mission Interministérielle sur l’effet de serre (MEDD), France 41 pGoogle Scholar
  29. Reis DS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313:97–116CrossRefGoogle Scholar
  30. Renard B (2006) Détection et prise en compte d’éventuels impacts du changement climatique sur les extrêmes hydrologiques en France. Thèse de doctorat, INP Grenoble 361 pGoogle Scholar
  31. Rohrer M, Salzmann N, Stoffel M, Kulkarni AV (2013) Missing (in situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science Total Environ 468–469(Suppl):S60–S70CrossRefGoogle Scholar
  32. Salazar S, Francés F, Komma J, Blume T, Francke T, Bronstert A, Blöschl G (2013) A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat Hazards Earth Sys Sci 12:3287–3306CrossRefGoogle Scholar
  33. Smith JB, Pitts G (1997) Regional climate change scenarios for vulnerability and adaptation assessments. Clim Change 36:3–21CrossRefGoogle Scholar
  34. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498CrossRefGoogle Scholar
  35. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:95–116CrossRefGoogle Scholar
  36. Vélez JJ, Puricelli M, López Unzu F, Francés F (2009) Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol Earth Sys Sci 13:229–246CrossRefGoogle Scholar
  37. Viglione A (2009) nsRFA: non-supervised regional frequency analysis. R package, Version 0.6–9. (accessed 24 Aug 2009; published 19 Aug 2009)
  38. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 36:1068Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Virginia Ruiz-Villanueva
    • 1
  • Markus Stoffel
    • 1
    • 2
  • Gianbattista Bussi
    • 3
  • Félix Francés
    • 4
  • Christian Bréthaut
    • 5
  1., Institute of Geological SciencesUniversity of BernBernSwitzerland
  2. 2.Climatic Change and Climate Impacts, Institute for Environmental SciencesUniversity of GenevaCarougeSwitzerland
  3. 3.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  4. 4.Research Institute of Water and Environmental EngineeringUniversitat Politècnica de ValènciaValenciaSpain
  5. 5.Politics, Environment and Territories, Institute for Environmental SciencesUniversity of GenevaCarougeSwitzerland

Personalised recommendations