Regional Environmental Change

, Volume 15, Issue 6, pp 1105–1119 | Cite as

Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia

  • Alemayehu MulunehEmail author
  • Birhanu Biazin
  • Leo Stroosnijder
  • Woldeamlak Bewket
  • Saskia Keesstra
Original Article


This study assesses potential impacts of climate change on maize and wheat yields in the Central Rift Valley (CRV) of Ethiopia. We considered effects of elevated atmospheric carbon dioxide (CO2) and changes in rainfall during the main (Kiremt) and the short (Belg) rainfall cropping seasons during the two future periods (2020–2049 and 2066–2095). The MarkSimGCM daily weather generator was used to generate projected rainfall and temperature data using the outputs from ECHAM5 general circulation model and ensemble mean of six models under A2 (high) and B1 (low) emission scenarios. Crop yield simulations were made with the FAO’s AquaCrop model. The projected rainfall during Kiremt increases by 12–69 % while rainfall during Belg decreases by 20–68 %. The combined effect of elevated CO2 and projected climate factors increases maize yield by up to 59 % in sub-humid/humid areas of the CRV, but could result in a decrease of up to 46 % in the semiarid areas under ECHAM5 model. However, the maize yield increases in all parts of the CRV under the ensemble mean of models. Wheat yield shows no significant response to the projected rainfall changes, but increases by up to 40 % due to elevated CO2. Our results generally suggest that climate change will increase crop yields in the sub-humid/humid regions of the CRV. However, in the semi-arid parts the overall projected climate change will affect crop yields negatively.


Climate change Rainfall Belg Kiremt Elevated CO2 Crop yield 



The authors are grateful to the Netherlands Organization for International Cooperation in Higher Education (NUFFIC) and International Foundation for Science (IFS) for supporting the research financially. The authors would like to thank the Ethiopian National Meteorological Agency for providing the climate data. The authors are also thankful to Demie Moore for her language editorial support.


  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, RomeGoogle Scholar
  2. Araya A, Stroosnijder L, Keesstra SD (2010) A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia. Agric For Meteorol 150:1057–1064. doi: 10.1016/j.agrformet.2010.04.003 CrossRefGoogle Scholar
  3. Araya A, Stroosnijder L, Girmay G, Keesstra SD (2011) Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)). Agric Water Manag 98:775–783. doi: 10.1016/j.agwat.2010.12.001 CrossRefGoogle Scholar
  4. Araya A, Stroosnijder L, Habtu S, Keesstra SD, Berhe M, Hadgu KM (2012) Risk assessment by sowing date for barley (Hordeum vulgare) in northern Ethiopia. Agric For Meteorol 154:30–37. doi: 10.1016/j.agrformet.2011.11.001 CrossRefGoogle Scholar
  5. Barron J, Rockström J, Gichuki F, Hatibu N (2003) Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agric For Meteorol 117:23–37. doi: 10.1016/S0168-1923(03)00037-6 CrossRefGoogle Scholar
  6. Bewket W, Conway D (2007) A Note on the temporal and spatial variability of rainfall in the drought-prone Amhara Region of Ethiopia. Int J Climatol 27:1467–1477. doi: 10.1002/joc.1481 CrossRefGoogle Scholar
  7. Biazin B, Sterk G (2013) Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agric Ecosyst Environ 164:100–113. doi: 10.1016/j.agee.2012.09.012 CrossRefGoogle Scholar
  8. Biazin B, Stroosnijder L (2012) To tie or not to tie ridges for water conservation in Rift Valley dry lands of Ethiopia. Soil Tillage Res 24:83–94. doi: 10.1016/j.still.2012.05.006 CrossRefGoogle Scholar
  9. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734. doi: 10.1002/joc.1623 CrossRefGoogle Scholar
  10. Chiotti QP, Johnston T (1995) Extending the boundaries of climate change research: a discussion on agriculture. J Rural Stud 11:335–350CrossRefGoogle Scholar
  11. Cook KH, Vizy EK (2012) Impact of climate change on mid-twenty-first century growing seasons in Africa. Clim Dyn 39:2937–2955. doi: 10.1007/s00382-012-1324-1 CrossRefGoogle Scholar
  12. Deressa T, Hassan R (2009) Economic impact of climate change on crop production in Ethiopia: evidence from cross-section measures. J Afr Econ 18:529–554. doi: 10.1093/jae/ejp002 CrossRefGoogle Scholar
  13. Di Falco S, Yesuf M, Kohlin G, Ringler C (2011) Estimating the impact of climate change on agriculture in low-income countries: household level evidence from the Nile Basin, Ethiopia. Environ Resour Econ 52:457–478. doi: 10.1007/s10640-011-9538-y CrossRefGoogle Scholar
  14. Dixit PN, Cooper PJ, Rao KP, Dimes J (2011) Adding value to field-based agronomic research through climate risk assessment: a case study of maize production in Kitale, Kenya. Exp Agric 47:317–338. doi: 10.1017/S0014479710000773 CrossRefGoogle Scholar
  15. Doherty RM, Sitch S, Smith B, Lewis SL, Thornton PK (2010) Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa. Glob Chang Biol 16:617–640. doi: 10.1111/j.1365-2486.2009.01997.x CrossRefGoogle Scholar
  16. Downing TE, Ringius L, Hulme M, Waughray D (1997) Adapting to climate change in Africa. Mitig Adapt Strat Glob Chang 2:19–44CrossRefGoogle Scholar
  17. Erkossa T, Awulachew SB, Aster D (2011) Soil fertility effect on water productivity of maize in the upper Blue Nile basin, Ethiopia. Agric Sci 2:238–247. doi: 10.4236/as.2011.23032 Google Scholar
  18. FAO (2009) ETO program. Calculation of reference evapotranspiration with various calculation methods. Version 3.1. FAO, RomeGoogle Scholar
  19. Farrow F, Musoni D, Cook S, Buruchara R (2011) Assessing the risk of root rots in common beans in East Africa using simulated, estimated and observed daily rainfall data. Exp Agric 47:357–373. doi: 10.1017/S0014479710000980 CrossRefGoogle Scholar
  20. Funk C, Dettinger MD, Michaelsen JC, Verdin JP, Brown ME, Barlow M, Hoell A (2008) Warming of the Indian Ocean threatens Eastern and Southern African food security but could be mitigated by agricultural development. PNAS 105:11081–11086. doi: 10.1073/pnas.0708196105 CrossRefGoogle Scholar
  21. Giorgi F, Coppola E (2010) Does the model regional bias affect the projected regional climate change? An analysis of global model projections. Clim Chang 100:787–795. doi: 10.1007/s10584-010-9864-z CrossRefGoogle Scholar
  22. Heng LK, Hsiao T, Evett S, Howell T, Steduto P (2009) Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron J 101:488–498. doi: 10.2134/agronj2008.0029xs CrossRefGoogle Scholar
  23. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA eds (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  24. Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E (2009) AquaCrop-the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J 101:448–459. doi: 10.2134/agronj2008.0218s CrossRefGoogle Scholar
  25. Jones PG, Thornton PK (1993) A rainfall generator for agricultural applications in the tropics. Agric For Meteorol 63:1–19CrossRefGoogle Scholar
  26. Jones PG, Thornton PK (1997) Spatial and temporal variability of rainfall related to a third- order Markov model. Agric For Meteorol 86:127–138CrossRefGoogle Scholar
  27. Jones PG, Thornton PK (2000) MarkSim: software to generate daily weather data for Latin America and Africa. Agron J 92:445–453. doi: 10.2134/agronj2000.923445x CrossRefGoogle Scholar
  28. Jones PG, Thornton PK (2003) The potential impacts of climate change in tropical agriculture: the case of maize in Africa and Latin America in 2055. Glob Environ Chang 13:51–59. doi: 10.1016/S0959-3780(02)00090-0 CrossRefGoogle Scholar
  29. Jones PG, Thornton PK (2013) Generating downscaled weather data from a suite of climate models for agricultural modeling applications. Agric Syst 114:1–5. doi: 10.1016/j.agsy.2012.08.002 CrossRefGoogle Scholar
  30. Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol 150:1443–1452. doi: 10.1016/j.agrformet.2010.07.008 CrossRefGoogle Scholar
  31. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39(2)Google Scholar
  32. Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116:D15111. doi: 10.1029/2010JD015068 CrossRefGoogle Scholar
  33. McHugh MJ (2005) Multi-model trends in East African rainfall associated with increased [CO2]. Geophys Res Lett 32(L01707):2005. doi: 10.1029/2004GL021632 Google Scholar
  34. Meehl GA, Stocker TF, Collins WD, Friedlingstein P et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 749–844Google Scholar
  35. Meza FJ, Silva D (2009) Dynamic adaptation of maize and wheat production to climate change. Clim Chang 94:143–156. doi: 10.1007/s10584-009-9544-z CrossRefGoogle Scholar
  36. Moore N, Alargarawamy G, Pijanowski B, Thornton P, Lofgren B, Olson J, Andresen J, Yanda P, Qi J (2012) East African food security as influenced by future climate change and land use change at local to regional scales. Clim Chang 110:823–844. doi: 10.1007/s10584-011-0116-7 CrossRefGoogle Scholar
  37. Nonhebel S (1993) Effects of changes in temperature and CO2 concentration on simulated spring wheat yields in the Netherlands. Clim Chang 24:311–329CrossRefGoogle Scholar
  38. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socioeconomic scenarios. Glob Environ Chang 14:53–67. doi: 10.1016/j.gloenvcha.2003.10.008 CrossRefGoogle Scholar
  39. Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop-the FAO crop model for predicting yield response to water: II. Main algorithms and soft ware description. Agron J 101:438–447. doi: 10.2134/agronj2008.0140s CrossRefGoogle Scholar
  40. Rockström J, Barron J, Fox P (2003) Water productivity in rainfed agriculture: challenges and opportunities for smallholder farmers in drought prone tropical agro-ecosystems. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvements. CABI, WallingfordGoogle Scholar
  41. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max- Planck-Institut für Meteorologie Rep. 349, HamburgGoogle Scholar
  42. Rosell S (2011) Regional perspective on rainfall change and variability in the central highlands of Ethiopia, 1978–2007. Appl Geogr 31:329–338. doi: 10.1016/j.apgeog.2010.07.005 CrossRefGoogle Scholar
  43. Salemi H, Soom MAM, Lee TS, Mousavi SF, Ganji A, Yusoff MK (2011) Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr J Agric Res 610:2204–2215. doi: 10.5897/AJAR10.1009 Google Scholar
  44. Segele ZT, Lamb PJ (2005) Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol Atmos Phys 89:153–180. doi: 10.1007/s00703-005-0127-x CrossRefGoogle Scholar
  45. Seleshi Y, Camberlin P (2006) Recent changes in dry spell and extreme rainfall events in Ethiopia. Theor Appl Climatol 83:181–191. doi: 10.1007/s00704-005-0134-3 CrossRefGoogle Scholar
  46. Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Climatol 24:973–983. doi: 10.1002/joc.1052 CrossRefGoogle Scholar
  47. Semenov MA, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim Res 41:1–14. doi: 10.3354/cr00836 CrossRefGoogle Scholar
  48. Shongwe EM, van Oldenborgh GJ, van Den Hurk B, van Aalst M (2011) Projected changes in mean and extreme precipitation in Africa under global warming, Part II: East Africa. J Clim 24:3718–3731. doi: 10.1175/2010JCLI2883.1 CrossRefGoogle Scholar
  49. Sivakumar MVK (1988) Predicting rainy season potential from the onset of rains in southern Sahelian and Sudanian climatic zones of West Africa. Agric For Meteorol 42:295–305CrossRefGoogle Scholar
  50. Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437. doi: 10.2134/agronj2008.0139s CrossRefGoogle Scholar
  51. Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc 147(1):1–34Google Scholar
  52. Stern R, Rijks D, Dale I, Knock J (2006) Instat climatic guide. Statistics Services Center, University of Reading, UK, pp 247–281Google Scholar
  53. Thornton PK, Jones PG, Alagarswamy G, Andresen J (2009) Spatial variation of crop yield response to climate change in East Africa. Glob Environ Chang 19:54–65. doi: 10.1016/j.gloenvcha.2008.08.005 CrossRefGoogle Scholar
  54. Thornton PK, Jones PG, Eriksen PJ, Challinor AJ (2011) Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philos Trans R Soc A 369:117–136. doi: 10.1098/rsta.2010.0246 CrossRefGoogle Scholar
  55. Vanuytrecht E, Raes D, Willems P (2011) Considering sink strength to model crop production under elevated atmospheric [CO2]. Agric For Meteorol 151:1753–1762. doi: 10.1016/j.agrformet.2011.07.011 CrossRefGoogle Scholar
  56. Wang GL (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi: 10.1007/s00382-005-0057-9 CrossRefGoogle Scholar
  57. Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37:2417–2435. doi: 10.1007/s00382-010-0984-y CrossRefGoogle Scholar
  58. Williams AP, Funk C, Michaelsen J, Rauscher SA, Robertson I, Wils THG, Koprowski M, Eshetu Z, Loader NJ (2012) Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Clim Dyn 39:2307–2328. doi: 10.1007/s00382-011-1222-y CrossRefGoogle Scholar
  59. Yang P, Wu W, Li Z, Yu Q, Liu Z, Tang P, Zha Y, Tang H (2013) Simulated impact of elevated CO2, temperature, and precipitation on the winter wheat yield in the Northern China Plain. Reg Environ Chang 14:61–74. doi: 10.1007/s10113-013-0484-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alemayehu Muluneh
    • 1
    • 2
    Email author
  • Birhanu Biazin
    • 3
  • Leo Stroosnijder
    • 1
  • Woldeamlak Bewket
    • 4
  • Saskia Keesstra
    • 1
  1. 1.Soil Physics and Land Management GroupWageningen UniversityWageningenThe Netherlands
  2. 2.School of Biosystems and Environmental EngineeringHawassa UniversityHawassaEthiopia
  3. 3.International Livestock Research InstituteAddis AbabaEthiopia
  4. 4.Department of Geography and Environmental StudiesAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations