Advertisement

Regional Environmental Change

, Volume 15, Issue 5, pp 895–906 | Cite as

Impacts of climate change on biodiversity in Israel: an expert assessment approach

  • Marcelo SternbergEmail author
  • Ofri Gabay
  • Dror Angel
  • Orit Barneah
  • Sarig Gafny
  • Avital Gasith
  • José M. Grünzweig
  • Yaron Hershkovitz
  • Alvaro Israel
  • Dana Milstein
  • Gil Rilov
  • Yosef Steinberger
  • Tamar Zohary
Original Article

Abstract

The Mediterranean region is both a global biodiversity hot spot and one of the biomes most strongly affected by human activities. Ecologists and land managers are increasingly required to advise on threats to biodiversity under foreseeable climate change. We used expert surveys to evaluate current understanding and uncertainties regarding climate change impacts on biodiversity in terrestrial, inland freshwater, and marine ecosystems of Israel. Finally, we propose a response strategy toward minimizing these changes. The surveys and the published literature indicated that the main climate change impacts in Israel include ongoing deterioration of freshwater habitats, decline of shrubland and woodland areas, and increased frequency and severity of forest fires. For the Mediterranean Sea, the surveys predict further introduction and establishment of invasive species from the Red Sea, accelerated erosion of coastal rocky habitat, and collapse of coastal rocky platforms. In the Gulf of Aqaba, Red Sea, corals may be resilient to foreseen climate change due to their high tolerance for rising water temperatures. Despite these predictions, science-based knowledge regarding the contribution of management toward minimizing climate change impacts on biodiversity is still lacking. Habitat loss, degradation, and fragmentation are presently the primary and immediate threats to natural ecosystems in Israel. Protection of natural ecosystems, including local refugia, must be intensified to maintain existing biodiversity under pressure from mounting urban development and climate change. This protection policy should include ecological corridors to minimize the consequences of fragmentation of existing natural habitats for species survival. A longer-term strategy should mandate connectivity across environmental and climatic gradients to maintain natural resilience by allowing reorganization of natural ecosystems facing climate change.

Keywords

Adaptation Connectivity Freshwater ecosystems Marine ecosystems Protected corridors Terrestrial ecosystems 

Notes

Acknowledgments

The study was supported by the Israel Climate Change Information Center (ICCIC) in preparation for formulating Israel’s national response strategy to climate change. ICCIC was financially supported by the Israel Ministry for Environmental Protection (MEP). We thank all the people who answered the questionnaire as part of the expert survey and the Chief Scientist of MEP for supporting this project. Thanks are also extended to two anonymous reviewers for fruitful comments on an earlier version of this manuscript.

Supplementary material

10113_2014_675_MOESM1_ESM.docx (51 kb)
Supplementary material 1 (DOCX 51 kb)

References

  1. Adler M, Ziglio E (1996) Gazing into the oracle. Jessica Kingsley Publishers, BristolGoogle Scholar
  2. Anderegg WRL, Kane D, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36. doi: 10.1038/nclimate1635 CrossRefGoogle Scholar
  3. Baker A, Starger C, McClanahan T et al (2004) Corals’ adaptive response to climate. Nature 430(74):1. doi: 10.1038/430741a Google Scholar
  4. Beche L, Connors P, Resh V et al (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32:778–788. doi: 10.1111/j.1600-0587.2009.05612.x CrossRefGoogle Scholar
  5. Bellan-Santini D, Bellan G (2000) Distribution and peculiarities of Mediterranean marine biocoenosis. Biol Mar Mediter 7:67–80Google Scholar
  6. Ben Rais Lasram F, Guilhaumon F, Mouillot D (2009) Fish diversity patterns in the Mediterranean Sea: deviations from a mid-domain model. Mar Ecol Prog Ser 376:253–267. doi: 10.3354/meps07786 CrossRefGoogle Scholar
  7. Ben Rais Lasram F, Guilhaumon F, Albouy C, Somotz S, Thuiller W, Mouillot D (2010) The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Global Change Biol 16:3233–3245. doi: 10.1111/j.1365-2486.2010.02224.x CrossRefGoogle Scholar
  8. Bennett G, Mulongoy KJ (2006) Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series No. 23, 100 ppGoogle Scholar
  9. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol 273:2305–2312. doi: 10.1098/rspb.2006.3567 CrossRefGoogle Scholar
  10. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460. doi: 10.1016/j.tree.2008.03.011 CrossRefGoogle Scholar
  11. Butchart SHM et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi: 10.1126/science.1187512 CrossRefGoogle Scholar
  12. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478. doi: 10.1073/pnas.1010070108 CrossRefGoogle Scholar
  13. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi: 10.1126/science.1206432 CrossRefGoogle Scholar
  14. Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5:e11842. doi: 10.1371/journal.pone.0011842 CrossRefGoogle Scholar
  15. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95:755–770. doi: 10.1111/j.1365-2745.2007.01240.x CrossRefGoogle Scholar
  16. Cook J, Nuccitelli D, Green SA, Richardson M, Winkler B, Painting R, Way R, Jacobs P, Skuce A (2013) Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ Res Lett 8:024024. doi: 10.1088/1748-9326/8/2/024024 CrossRefGoogle Scholar
  17. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828. doi: 10.1111/j.1461-0248.2004.00634.x CrossRefGoogle Scholar
  18. Delitti W, Ferran A, Trabaud L et al (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant composition and productivity. Plant Ecol 177:57–70. doi: 10.1007/s11258-005-2140-z CrossRefGoogle Scholar
  19. Dorman M, Svoray T, Perevolotsky A, Sarris D (2013) Forest performance during two consecutive drought periods: diverging long-term trends and short-term responses along a climatic gradient. For Ecol Manag 310:1–9. doi: 10.1016/j.foreco.2013.08.009 CrossRefGoogle Scholar
  20. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/S1464793105006950 CrossRefGoogle Scholar
  21. Einav R, Israel A (2007) Seaweeds on the abrasion platforms of the intertidal zone in eastern Mediterranean shores. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 193–207CrossRefGoogle Scholar
  22. Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Global Change Biol 19:3640–3647. doi: 10.1111/gcb.12356 CrossRefGoogle Scholar
  23. Gafny S (2004) Threatened amphibians of Israel. In Dolev A and Perevolotsky A (eds) Endangered species in Israel: red list of threatened animals. Vertebrates. Nature and Park Authority and the Society for the Preservation of Nature, Pub. Israel, pp 55–68Google Scholar
  24. Gafny S, Gasith A, Goren M (1992) Effect of water level fluctuation on the shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. J Fish Biol 41:863–871CrossRefGoogle Scholar
  25. Galil B (2008) Alien species in the Mediterranean Sea—which, when, where, why? Hydrobiologia 606:105–116. doi: 10.1007/s10750-008-9342-z CrossRefGoogle Scholar
  26. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol 15:1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x CrossRefGoogle Scholar
  27. Gasith A, Gafny S (1990) Effects of water level fluctuation on the structure and function of the littoral zone. In: Tilzer M, Serruya C (eds) Large lakes: ecological structure and function. Springer-Verlag, Berlin, pp 156–171CrossRefGoogle Scholar
  28. Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi: 10.1146/annurev.ecolsys.30.1.51 CrossRefGoogle Scholar
  29. Gelabert ER (2007) Europe’s environment—the fourth assessment. EEA (European Environment Agency), CopenhagenGoogle Scholar
  30. Gertman I, Goldman R (2014) Interannual changes in the thermohaline structure of the south eastern Mediterranean. In: CIESM, Marseille (in press)Google Scholar
  31. Golodets C, Sternberg M, Kigel J, Boeken B, Henkin Z, Seligman NG, Ungar ED (2013) From desert to Mediterranean rangelands: will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity? Clim Change 119:785–798. doi: 10.1007/s10584-013-0758-8 CrossRefGoogle Scholar
  32. Goodfriend GA (1988) Mid-Holocene rainfall in the Negev Desert from 13C of land snail shell organic matter. Nature 333:757–760 doi: 10.1038/333757a0
  33. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi: 10.1111/j.1461-0248.2005.00871.x CrossRefGoogle Scholar
  34. Harvell C, Mitchell C, Ward J, Altizer S, Dobson A, Ostfeld R, Samuel M (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. doi: 10.1126/science.1063699 CrossRefGoogle Scholar
  35. Heller J, Dolev A, Zohary T, Gal G (2014) Invasion dynamics of the snail Pseudoplotia scabra in Lake Kinneret. Biol Invasions 16:7–12. doi: 10.1007/s10530-013-0500-5 CrossRefGoogle Scholar
  36. Hershkovitz Y, Gasith A (2013) Resistance, resilience, and community dynamics in Mediterranean-climate streams. Hydrobiologia 719:59–75. doi: 10.1007/s10750-012-1387-3 CrossRefGoogle Scholar
  37. IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  38. Israel A, Hophy M (2002) Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biol 8:1–10. doi: 10.1046/j.1365-2486.2002.00518.x CrossRefGoogle Scholar
  39. Israel A, Einav R, Silva PC, Paz G, Chacana ME, Douek J (2010) First report of the seaweed Codium parvulum (Chlorophyta) in Mediterranean waters: recent blooms on the northern shores of Israel. Phycologia 49:107–112. doi: 10.2216/09-28.1 CrossRefGoogle Scholar
  40. Lavergne S, Mouquet N, Thuiller W et al (2010) Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350. doi: 10.1146/annurev-ecolsys-102209-144628 CrossRefGoogle Scholar
  41. Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann NY Acad Sci 1162:79–98. doi: 10.1111/j.1749-6632.2009.04147.x CrossRefGoogle Scholar
  42. Maruani T, Amit-Cohen I (2009) The effectiveness of the protection of riparian landscapes in Israel. Land Use Policy 26:911–918. doi: 10.1016/j.landusepol.2008.11.002 CrossRefGoogle Scholar
  43. McBride MF, Burgman MA (2012) What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In: Perera AH, Drew CA, Johnson CJ (eds) Expert knowledge and its application in landscape ecology. Springer, Berlin, pp 11–38CrossRefGoogle Scholar
  44. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi: 10.3354/cr031085 CrossRefGoogle Scholar
  45. Morri C, Puce S, Bianchi CN et al (2009) Hydroids (Cnidaria: Hydrozoa) from the Levant Sea (mainly Lebanon), with emphasis on alien species. J Mar Biol Assoc UK 89:49–62. doi: 10.1017/S0025315408002749 CrossRefGoogle Scholar
  46. Nelson KC, Palmer MA, Pizzuto JE, Moglen GE, Angermeier PL, Hilderbrand RH, Dettinger M, Hayhoe K (2009) Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. J Appl Ecol 46:154–163. doi: 10.1111/j.1365-2664.2008.01599.x CrossRefGoogle Scholar
  47. Ostrovsky I, Rimmer A, Yacobi YZ, Nishri A, Sukenik A, Hadas O, Zohary T (2013) Long-term changes in the Lake Kinneret ecosystem: the effects of climate change and anthropogenic factors. In: Goldman CR, Kumagai M, Robarts RD (eds) Climate change and inland waters. Impacts and mitigation approaches for ecosystems and society. Wiley-Blackwell, New York, pp 271–293Google Scholar
  48. Palmer M, Lettenmaier D, Poff N et al (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manag 44:1053–1068. doi: 10.1007/s00267-009-9329-1 CrossRefGoogle Scholar
  49. Pe’er G, Safriel U (2000) Climate Change Israel National Report under The United Nations Framework Convention on Climate Change: impact, vulnerability and adaptation: commissioned by the Ministry of Environment From the Blaustein Institute for Desert Research, Sede Boqer Campus of Ben-Gurion University of the NegevGoogle Scholar
  50. Preston BL, Yuen EJ, Westaway RM (2011) Climate adaptation planning in practice: an evaluation of adaptation plans from three developed nations. Mitig Adapt Strat Global Change 4:407–438. doi: 10.1007/s11625-011-0129-1 CrossRefGoogle Scholar
  51. Quignard J, Raibaut A (1993) Ichthyofauna of the Languedocian Coast (Gulf of Lion): faunistic and demographic modifications. Vie Milieu 43:191–195Google Scholar
  52. Revell D, Dugan J, Hubbard D (2011) Physical and ecological responses of sandy beaches to the 1997–98 El Niño. J Coast Res 27:718–730. doi: 10.2112/JCOASTRES-D-09-00179.1 CrossRefGoogle Scholar
  53. Rilov G (2013) Regional extinctions and invaders’ domination: an ecosystem phase-shift of Levant reefs. In: Briand F (ed) 40th CIESM congress, Marseille (in press)Google Scholar
  54. Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration and growth rates of bloom forming cyanobacteria. NZ J Mar Freshw Res 21:391–399CrossRefGoogle Scholar
  55. Rosen SD, Raskin L, Galanti B (2013) Long-term characteristics of sea level, wave, wind and current at central Mediterranean coast of Israel from 20 years of data at GLOSS station 80—Hadera. In: 40th CIESM congress, MarseilleGoogle Scholar
  56. Safriel U (1974) Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science 186:1113–1115CrossRefGoogle Scholar
  57. Safriel U (2010) Israel’s National Biodiversity Plan. Ministry of Environmental Protection. http://www.cbd.int/iyb/doc/celebrations/iyb-israel-sviva-plan-en.pdf
  58. Samuels R, Rimmer A, Alpert P (2009) Effect of extreme rainfall events on the water resources of the Jordan River. J Hydrol 375:513–523. doi: 10.1016/j.jhydrol.2009.07.001 CrossRefGoogle Scholar
  59. Sapir N, Wikelski M, Avissar R et al (2011) Timing and flight mode of departure in migrating European bee-eaters in relation to multi-scale meteorological processes. Behav Ecol Sociobiol 65:1353–1365. doi: 10.1007/s00265-011-1146-x CrossRefGoogle Scholar
  60. Sever N, Ne’eman G (2008) Drought damage and recovery of Quercus calliprinos after a series of drought years in Israel. Forest 10:10–16 (in Hebrew)Google Scholar
  61. Shacham G (2003) Nature right for water: water allocation demands for water bodies and wet habitats—a policy statement document. Israel Ministry of the Environment and Israel Nature and Parks Authority. 46 pp (in Hebrew)Google Scholar
  62. Shirman B (2004) East Mediterranean sea level changes over the period 1958–2001. Israel J Earth Sci 53:1–12CrossRefGoogle Scholar
  63. Shoo LP, O’Mara J, Perhans K, Rhodes JR, Runting RK, Schmidt S, Traill LW, Weber LC, Wilson KA, Lovelock CE (2014) Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Reg Environ Change 14:435–447. doi: 10.1007/s10113-012-0385-3 CrossRefGoogle Scholar
  64. Siegal Z, Tzoar H, Karnieli A (2013) Effects of prolonged drought on the vegetation cover of sand dunes in NW Negev desert: field survey, remote sensing and conceptual modeling. Aeolian Res 9:161–173. doi: 10.1016/j.aeolia.2013.02.002 CrossRefGoogle Scholar
  65. Silverman J, Lazar B, Cao L et al (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi: 10.1029/2008GL036282 Google Scholar
  66. Steinitz H (2010) The effects of global climate change on the distribution of terrestrial mammals in Israel. PhD thesis, Tel Aviv UniversityGoogle Scholar
  67. Sternberg M, Holzapfel C, Tielbörger K, Sarah P, Kigel J, Lavee H, Fleischer A, Jeltsch F, Köchy M (2011) The use and misuse of climatic gradients for evaluating climate impact on dryland ecosystems - an example for the solution of conceptual problems. In: Blanco J, Kheradmand H (eds) Climate change—geophysical foundations and ecological effects, pp 361–374. doi: 10.5772/23103
  68. Talmon Y, Sternberg M, Grünzweig JM (2011) Impact of precipitation change and spatial heterogeneity on soil respiration under a combination of aridity gradient and rainfall manipulation. Glob Change Biol 17:1108–1118. doi: 10.1111/j.1365-2486.2010.02285.x CrossRefGoogle Scholar
  69. Tzur Y, Safriel U (1978) Vermetid platforms as indicators of coastal movements. Israel J Earth Sci 27:124–127Google Scholar
  70. Vicente-Serrano SM, Zouber A, Lasanta T, Pueyo Y (2012) Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol Monogr 82:407–428. doi: 10.1890/11-2164.1 CrossRefGoogle Scholar
  71. Yeruham E (2013) Possible explanations for Paracentrotus lividus (European purple sea urchin) population collapse in South-East Mediterranean. Tel Aviv University, Tel AvivGoogle Scholar
  72. Zacharias I, Zamparas M (2010) Mediterranean temporary ponds. A disappearing ecosystem. Biodivers Conserv 19:3827–3834. doi: 10.1007/s10531-010-9933-7 CrossRefGoogle Scholar
  73. Zduniak P, Yosef R, Sparks T et al (2010) Rapid advances in the timing of the spring passage migration through Israel of the steppe eagle Aquila nipalensis. Climate Res 42:217–222. doi: 10.1007/s10531-010-9933-7 CrossRefGoogle Scholar
  74. Ziv B, Saaroni H, Pargament R, Harpaz T, Alpert P (2014) Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg Environ Change. doi:  10.1007/s10113-013-0414-x (in press)
  75. Zohary T (2004) Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshw Biol 49:1355–1371CrossRefGoogle Scholar
  76. Zohary T, Gasith A (2014) The Littoral zone. In: Zohary T, Sukenik A, Berman T, Nishri A (eds) Lake Kinneret: ecology and management. Springer, Heidelberg (in press)Google Scholar
  77. Zohary T, Ostrovsky I (2011) Ecological impacts of excessive water level fluctuations in stratified freshwater lake. Inland Waters 1:47–59. doi: 10.5268/IW-1.1.406 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marcelo Sternberg
    • 1
    Email author
  • Ofri Gabay
    • 1
  • Dror Angel
    • 2
  • Orit Barneah
    • 3
  • Sarig Gafny
    • 3
  • Avital Gasith
    • 4
  • José M. Grünzweig
    • 5
  • Yaron Hershkovitz
    • 4
  • Alvaro Israel
    • 6
  • Dana Milstein
    • 7
  • Gil Rilov
    • 6
  • Yosef Steinberger
    • 8
  • Tamar Zohary
    • 9
  1. 1.Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Maritime Civilizations, Leon Charney School of Marine SciencesHaifa UniversityHaifaIsrael
  3. 3.School of Marine SciencesRuppin Academic CenterEmek HeferIsrael
  4. 4.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  5. 5.Institute for Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemJerusalemIsrael
  6. 6.National Institute of OceanographyIsrael Oceanographic and Limnological ResearchHaifaIsrael
  7. 7.Science DivisionNature and Parks AuthorityJerusalemIsrael
  8. 8.Mina and Edward Goodman Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael
  9. 9.Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological ResearchMigdalIsrael

Personalised recommendations