Advertisement

Regional Environmental Change

, Volume 14, Issue 3, pp 865–877 | Cite as

Exploring the efficiency of bias corrections of regional climate model output for the assessment of future crop yields in Europe

  • Alexander M. R. Bakker
  • Janette J. E. Bessembinder
  • Allard J. W. de Wit
  • Bart J. J. M. van den Hurk
  • Steven B. Hoek
Original Article

Abstract

Excessive summer drying and reduced growing season length are expected to reduce European crop yields in future. This may be partly compensated by adapted crop management, increased CO2 concentration and technological development. For food security, changes in regional to continental crop yield variability may be more important than changes in mean yields. The assessment of changes in regional and larger scale crop variability requires high resolution and spatially consistent future weather, matching a specific climate scenario. Such data could be derived from regional climate models (RCMs), which provide changes in weather patterns. In general, RCM output is heavily biased with respect to observations. Due to the strong nonlinear relation between meteorological input and crop yields, the application of this biased output may result in large biases in the simulated crop yield changes. The use of RCM output only makes sense after sufficient bias correction. This study explores how RCM output can be bias corrected for the assessment of changes in European and subregional scale crop yield variability due to climate change. For this, output of the RCM RACMO of the Royal Netherlands Meteorological Institute was bias corrected and applied within the crop simulation model WOrld FOod STudies to simulate potential and water limited yields of three divergent crops: winter wheat, maize and sugar beets. The bias correction appeared necessary to successfully reproduce the mean yields as simulated with observational data. It also substantially improved the year-to-year variability of seasonal precipitation and radiation within RACMO, but some bias in the interannual variability remained. This is caused by the fact that the applied correction focuses on mean and daily variability. The interannual variability of growing season length, and as a consequence the potential yields too, appeared even deteriorated. Projected decrease in mean crop yields is well in line with earlier studies. No significant change in crop yield variability was found. Yet, only one RCM is analysed in this study, and it is recommended to extend this study with more climate models and a slightly adjusted bias correction taking into account the variability of larger time scales as well.

Keywords

Climate change Crop yields Bias correction Spatial coherence RACMO CGMS Interannual variability 

Notes

Acknowledgments

This study was performed as part of the project “Cs7-Tailoring climate information for impact assessment” within the Dutch research programme Climate changes Spatial planning project.

References

  1. Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The era-interim archive. Tech. Rep. ERA report series 1, European centre for medium-range weather forecasts, UKGoogle Scholar
  2. Boogaard H, Eerens H, Supit I, van Diepen C, Piccard I, Kempeneers P (2002) Description of the MARS crop yield forecasting system (MCYFS). Technical report no. 19226-2002-02-F1FED ISP, Joint Research Centre, ItalyGoogle Scholar
  3. Boogaard H, Wolf J, Supit I, Niemeyer S, van Ittersum MK (2013) A regional implementation of WOFOST for calculating yield gaps of winter wheat across the European Union. Field Crops Res 143:130–142. doi: 10.1016/j.fcr.2012.11.005 CrossRefGoogle Scholar
  4. Bouman BAM, van Keulen H, van Laar HH, Rabbinge R (1996) The ‘school of de wit’ crop growth simulation models: pedigree and historical overview. Agric Syst 52:171–198CrossRefGoogle Scholar
  5. Brissette FP, Khalili M, Leconte R (2007) Efficient stochastic generation of multi-site synthetic precipitation data. J Hydrol 345:121–133. doi: 10.1016/j.jhydrol.2007.06.035 CrossRefGoogle Scholar
  6. Cammarano D, Stefanova L, Ortiz BV, Ramirez-Rodrigues M, Asseng S, Misra V, Wilkerson G, Basso B, Jones JW, Boote KJ, DiNapoli S (2013) Evaluating the fidelity of downscaled climate data on simulated wheat and maize production in the southeastern US. Reg Environ Change. doi: 10.1007/s10113-013-0410-1 Published onlineGoogle Scholar
  7. Ceglar A, Kajfež-Bogataj L (2012) Simulation of maize yield in current and changed climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur J Agron 37:83–95. doi: 10.1016/j.eja.2011.11.005 CrossRefGoogle Scholar
  8. Chen CC, McCarl BA, Schimmelpfennig DE (2004) Yield variability as influenced by climate: a statistical investigation. Clim Change 66:239–261CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB (2007) A summary of the prudence model projections of changes in European climate by the end of this century. Clim Change 81(suppl1):7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  10. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194. doi: 10.3354/cr00916 CrossRefGoogle Scholar
  11. de Wit AJW, Boogaard H, van Diepen CA (2005) Spatial resolution of precipitation and radiation: the effect on regional crop yield forecasts. Agric For Meteorol 135(1–4):156–168CrossRefGoogle Scholar
  12. de Wit A, Baruth B, Boogaard H, van Diepen K, van Kraalingen D, Micale F, te Roller J, Supit I, van den Wijngaart R (2010) Using ERA-INTERIM for regional crop yield forecasting in Europe. Clim Res 44:41–53. doi: 10.3354/cr00872 CrossRefGoogle Scholar
  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  14. Demuzere M, Werner M, van Lipzig NPM, Roeckner E (2009) An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. Int J Climatol 29(12):1796–1810. doi: 10.1002/joc.1821 CrossRefGoogle Scholar
  15. Déqué M, Somot S, Sanchez-Gomez E, Goodess C, Jacob D, Lenderink G, Christensen O (2012) The spread amongst ensembles regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38(5–6):951–964. doi: 10.1007/s00382-011-1053-x CrossRefGoogle Scholar
  16. Easterling WE, Weiss A, Hays CJ, Mearns LO (1998) Spatial scales of climate information for simulating wheat and maize productivity: the case of the US great plains. Agric For Meteorol 90(1–2):51–63CrossRefGoogle Scholar
  17. Genovese GP (1998) The methodology, the results and the evaluation of the mars crop yield forecasting system. In: Rijks D, Terres JM, Vossen P (eds) Agrometeorological applications for regional crop monitoring and production assessment. Report No. EUR 17735 EN., Office for Official Publications of the EU, Luxembourg, pp 67–119Google Scholar
  18. Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15:1065–1079. doi: 10.5194/hess-15-1065-2011 CrossRefGoogle Scholar
  19. Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric For Meteorol 170:19–31. doi: 10.1016/j.agrformet.2012.04.007 CrossRefGoogle Scholar
  20. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res(Atmospheres) 113:D20119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  21. Ho CK, Stephenson DB, Collins M, Ferro CAT, Brown SJ (2012) Calibration strategies: a source of additional uncertainty in climate change projections. Bull Am Meteorol Soc 93:21–26. doi: 10.1175/2011BAMS3110.1 CrossRefGoogle Scholar
  22. Isik M, Devadoss S (2006) An analysis of the impact of climate change on crop yields and yield variability. Appl Econ 38:835–844. doi: 10.1080/00036840500193682 CrossRefGoogle Scholar
  23. Jungclaus JH, Botzet M, Haak H, Marotzke J, Mikolajewicz U, Roeckner E, Keenlyside N, Latif M, Luo JJ (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  24. Lambert JJ, Daroussin J, Eimberck M, le Bas C, Jamagne M, King D, Montanarella L (2003) Soil geographical database for Eurasia and the Mediterranean: instructions guide for elaboration at scale 1:1,000,000. version 4.0. Tech. Rep. Report No. EUR 20422 EN., Office for Official Publications of the EU, LuxembourgGoogle Scholar
  25. Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe. 3. Impact on agriculture and forestry. A review. Agron Sustain Dev 29(2009):433–446. doi: 10.2800/48117 CrossRefGoogle Scholar
  26. Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496CrossRefGoogle Scholar
  27. Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. doi: 10.1088/1748-9326/2/1/014002 CrossRefGoogle Scholar
  28. Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower than expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921. doi: 10.1126/science.1114722 CrossRefGoogle Scholar
  29. Mearns LO, Easterling W, Hays C, Marx D (2001) Comparison of agricultural impacts of climate change calculated from high and low resolution climate change scenarios: part I. The uncertainty due to spatial scale. Clim Change 50(2):131–172CrossRefGoogle Scholar
  30. Micale F, Genovese G (2004) Meteorological data collection, processing and analysis, vol. 1. Tech. Rep. Report No. EUR 21291 EN., Office for Official Publications of the EU, LuxembourgGoogle Scholar
  31. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, et al (2000) Special report on emissions scenarios: a special report of Working Group III of the intergovernmental panel on climate change. CambridgeGoogle Scholar
  32. Oettli P, Sultan B, Baron C, Vrac M (2011) Are regional climate models relevant for crop yield prediction in West Africa? Environ Res Lett 6:014008. doi: 10.1088/1748-9326/6/1/014008 CrossRefGoogle Scholar
  33. Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112. doi: 10.1016/j.eja.2010.11.003 CrossRefGoogle Scholar
  34. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A 193(1032):120–146CrossRefGoogle Scholar
  35. Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39:L20401. doi: 10.1029/2012GL053839 CrossRefGoogle Scholar
  36. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theoret Appl Climatol 99(1–2):187–192. doi: 10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  37. Reidsma P, Ewert F, Boogaard H, Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100:51–60. doi: 10.1016/j.agsy.2008.12.009 CrossRefGoogle Scholar
  38. Roerink GJ, Bojanowski JS, de Wit AJW, Eerens H, Supit I, Leo O, Boogaard HL (2012) Evaluation of MSG-derived global radiation estimates for application in a regional crop model. Agric For Meteorol 160:36–47. doi: 10.1016/j.agrformet.2012.02.006 CrossRefGoogle Scholar
  39. Salack S, Sultan B, Oettli P, Muller B, Gaye AT, Hourdin F (2012) Représentation de la pluie dans les modèles régionaux de climat et application à l’estimation des rendements du mil au Sénégal. Sécheresse 23:14–23. doi: 10.1684/sec.2012.0332 Google Scholar
  40. Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35:397–414CrossRefGoogle Scholar
  41. Sluijter RJ, Reijmerink CWL, Overbeek B, Bessembinder J, van Dorland R, Kattenberg A, Geurts H, Siegmund P, Feijt A, Buisman J (2011) Bosatlas van het klimaat. Noordhoff, Groningen. ISBN 9789001120894Google Scholar
  42. Supit I, van Kappel RR (1998) A simple method to estimate global radiation. Sol Energy 63(3):147–160CrossRefGoogle Scholar
  43. Supit I, van Diepen CA, de Wit AJW, Wolf J, Kabat P, Baruth B, Ludwig F (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agric For Meteorol 164:96–111CrossRefGoogle Scholar
  44. Torriani DS, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34:59–69CrossRefGoogle Scholar
  45. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  46. van der Goot E (1997) Technical description of interpolation and processing of meteorological data in CGMS. Tech. rep., Joint Research Centre of the European Commission, Ispra, ItalyGoogle Scholar
  47. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, ExeterGoogle Scholar
  48. van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234CrossRefGoogle Scholar
  49. van Meijgaard E, van Ulft LH, van den Berg WJ, Bosveld FC, van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI Regional Atmospheric Climate MOdel RACMO, version 2.1. Tech. Rep. TR-302, Royal Netherlands Meteorological Institute/KNMIGoogle Scholar
  50. van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Kabat P (2012) Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrol Earth Syst Sci Discuss 9:6533–6568 (in review for Hydrology and Earth System Sciences)CrossRefGoogle Scholar
  51. Vossen P, Rijks D (1995) Early crop yield assessment of the EU countries: the system implemented by the joint research centre. Tech. Rep. Report No. EUR 16318 EN., Office for Official Publications of the EU, LuxembourgGoogle Scholar
  52. Wilks DS (1992) Adopting stochastic weather generation algorithms for climate change studies. Clim Change 22:67–84CrossRefGoogle Scholar
  53. Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210(1–4):178–191. doi: 10.1016/S0022-1694(98)00186-3 CrossRefGoogle Scholar
  54. Yao F, Xu Y, Lin E, Yokozawa M, Zhang J (2007) Assessing the impacts of climate change on rice yields in the main rice areas of China. Clim Change 80:395–409. doi: 10.1007/s10584-006-9122-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander M. R. Bakker
    • 1
  • Janette J. E. Bessembinder
    • 1
  • Allard J. W. de Wit
    • 2
  • Bart J. J. M. van den Hurk
    • 1
  • Steven B. Hoek
    • 2
  1. 1.Royal Netherlands Meteorological Institute KNMIDe BiltThe Netherlands
  2. 2.AlterraWageningen URWageningenThe Netherlands

Personalised recommendations