Regional Environmental Change

, Volume 14, Issue 3, pp 933–942 | Cite as

Synthesis of ecosystem vulnerability to climate change in the Netherlands shows the need to consider environmental fluctuations in adaptation measures

  • P. M. van Bodegom
  • J. Verboom
  • J. P. M. Witte
  • C. C. Vos
  • R. P. Bartholomeus
  • W. Geertsema
  • A. Cormont
  • M. van der Veen
  • R. Aerts
Original Article

Abstract

Climate change impacts on individual species are various and range from shifts in phenology and functional properties to changes in productivity and dispersal. The combination of impacts determines future biodiversity and species composition, but is difficult to evaluate with a single method. Instead, a comparison of mutually independent approaches provides information and confidence in patterns observed beyond what may be achieved in individual approaches. Here, we carried out such comparison to assess which ecosystem types in the Netherlands appear most vulnerable to climate change impacts, as arising from changes in hydrology, nutrient conditions and dispersal limitations. We thus combined meta-analyses of species range shifts with species distribution modelling and ecohydrological modelling with expert knowledge in two respective impact studies. Both impact studies showed that nutrient-poor ecosystems and ecosystem types with fluctuating water tables—like hay meadows, moist heathlands and moorlands—seem to be most at risk upon climate change. A subsequent meta-analysis of species–environmental stress relations indicated that particularly endangered species are adversely affected by the combination of drought and oxygen stress, caused by fluctuating moisture conditions. This implies that adaptation measures should not only aim to optimise mean environmental conditions but should also buffer environmental extremes. Major uncertainties in the assessment included the quantitative impacts of vegetation-hydrology feedbacks, vegetation adaptation and interactions between dispersal capacity and traits linked to environmental selection. Once such quantifications become feasible, adaptation measures may be tailor-made and optimised to conserve vulnerable ecosystem types.

Keywords

Climate adaptation measures Environmental stress Hydrology impacts Species distribution models Species range shifts 

Notes

Acknowledgments

This study was carried out in the framework of Project A1 ‘Biodiversity in a changing environment: predicting spatio-temporal dynamics of vegetation’, Project A2 ‘Climate change and habitat fragmentation; impacts and adaptation strategies’ of the Dutch national research programme Climate Change and Spatial planning (www.klimaatvoorruimte.nl) and the joint research programme of the Dutch Water Utility sector.

Supplementary material

10113_2013_511_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Aerts R, Bobbink R (1999) The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In: Langan SJ (ed) The impact of nitrogen deposition on natural and semi-natural ecosystems. Kluwer, Dordrecht, pp 85–122CrossRefGoogle Scholar
  2. Bal D et al (2001) Handboek Natuurdoeltypen (handbook nature target types) EC-LNV, WageningenGoogle Scholar
  3. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biol 8:390–407CrossRefGoogle Scholar
  4. Bakker A, Bessembinder J (2007) Neerslagreeksen voor de KNMI’06 scenario’s (precipitation series for the KNMI’06 scenarios). H2O 22:45–47Google Scholar
  5. Bartholomeus RP, Witte JPM, van Bodegom PM, van Dam JC, Aerts R (2008) Critical soil conditions for oxygen stress to plant roots: substituting the Feddes-function by a process-based model. J Hydrol 360:147–165CrossRefGoogle Scholar
  6. Bartholomeus RP, Witte JPM, van Bodegom PM, van Dam JC, Aerts R (2011) Climate change threatens endangered plant species by stronger and interacting water-related stresses. J Geophys Res 116:G04023Google Scholar
  7. Bartholomeus RP et al (2012) Process-based proxy of oxygen stress surpasses indirect ones in predicting vegetation characteristics. Ecohydrology 5:746–758CrossRefGoogle Scholar
  8. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377CrossRefGoogle Scholar
  9. Bernhardt-Römermann M et al (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541CrossRefGoogle Scholar
  10. Berry PM, Jones AP, Nicholls RJ, Vos CC (eds) (2007) Assessment of the vulnerability of terrestrial and coastal habitats and species in Europe to climate change, Annex 2 of Planning for biodiversity in a changing climate—BRANCH project final report. Natural England, UKGoogle Scholar
  11. Boulangeat I, Lavergne S, Van Es J, Garraud L, Thuiller W (2012) Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J Biogeogr 39:204–214CrossRefGoogle Scholar
  12. Brolsma RJ, Van Beek LPH, Bierkens MFP (2010) Vegetation competition model for water and light limitation. II: spatial dynamics of groundwater and vegetation. Ecol Model 221:1348–1363CrossRefGoogle Scholar
  13. Brooke C (2008) Conservation and adaptation to climate change. Conserv Biol 22:1471–1476CrossRefGoogle Scholar
  14. Buizer B et al (2012) Range shifts and global warming: ecological responses of Empetrum nigrum L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin. Environ Res Lett 7:025501Google Scholar
  15. Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323CrossRefGoogle Scholar
  16. de Boer HJ et al (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2. Proc Natl Acad Sci 108:4041–4046CrossRefGoogle Scholar
  17. Deque M et al (2012) The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim Dyn 38:951–964CrossRefGoogle Scholar
  18. Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962CrossRefGoogle Scholar
  19. Douma JC, de Haan MWA, Aerts R, Witte JPM, van Bodegom PM (2012a) Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. J Ecol 100:366–380CrossRefGoogle Scholar
  20. Douma JC, Shipley B, Witte JPM, Aerts R, van Bodegom PM (2012b) Disturbance and resource availability act differently on the same suite of plant traits; revisiting assembly hypotheses. Ecology 93:825–835CrossRefGoogle Scholar
  21. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  22. Fordham DA et al (2012) Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Change Biol 18:1357–1371CrossRefGoogle Scholar
  23. Groves CR et al (2012) Incorporating climate change into systematic conservation planning. Biodivers Conserv 21:1651–1671CrossRefGoogle Scholar
  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  25. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  26. Heikkinen RK et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777CrossRefGoogle Scholar
  27. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281CrossRefGoogle Scholar
  28. Isbell F et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–203CrossRefGoogle Scholar
  29. Kattge J et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935CrossRefGoogle Scholar
  30. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett 12:334–350CrossRefGoogle Scholar
  31. Keddy PA (1992) Assembly and response rules - two goals for predictive community ecology. J Veg Sci 3:157–164CrossRefGoogle Scholar
  32. Knapp AK et al (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821CrossRefGoogle Scholar
  33. Lowry CS, Anderson MP (2006) Assessment of aquifer storage recovery using ground water flow models. Ground Water 44:661–667Google Scholar
  34. Medlyn BE et al (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol 17:2134–2144CrossRefGoogle Scholar
  35. Ordoñez JC et al (2010a) Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91:3218–3228CrossRefGoogle Scholar
  36. Ordoñez JC et al (2010b) Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? Am Nat 175:225–239CrossRefGoogle Scholar
  37. Ozinga WA et al (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561CrossRefGoogle Scholar
  38. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  39. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci 108:17905–17909CrossRefGoogle Scholar
  40. Rietkerk M et al (2011) Local ecosystem feedbacks and critical transitions in the climate. Ecol Complex 8:223–228CrossRefGoogle Scholar
  41. Ritchie EG, Martin JK, Johnson CN, Fox BJ (2009) Separating the influences of environment and species interactions on patterns of distribution and abundance: competition between large herbivores. J Anim Ecol 78:724–731CrossRefGoogle Scholar
  42. Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  43. Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 99:656–663CrossRefGoogle Scholar
  44. Solomon S et al (2007) Technical summary. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  45. Tamis WL, Van’t Zelfde M, Van der Meijden R, de Haas UEA (2005) Changes in vascular plant biodiversity in the Netherlands in the 20th century explained by their climatic and other environmental characteristics. Clim Change 72:37–56CrossRefGoogle Scholar
  46. Van Bodegom PM et al (2012) Exploring the merits of trait-based concepts to improve predictions of ecosystem atmosphere fluxes in dynamic global vegetation models. Global Ecol Biogeogr 21:625–636CrossRefGoogle Scholar
  47. Van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J 7:640–653CrossRefGoogle Scholar
  48. Van der Meijden R, Odé B, Groen CLG, Witte JPM (2000) Bedreigde en kwetsbare vaatplanten in Nederland (Threatened and vulnerable vascular plants in the Netherlands). Gorteria 26:85–208Google Scholar
  49. van der Veen M, Wiesenekker E, Nijhof BSJ, Vos CC (2010) Klimaat respons database (Climate response database), versie 2.0. Alterra WUR, WageningenGoogle Scholar
  50. Van Oene H, Berendse F, de Kovel CGF (1999) Model analysis of the effects of historic CO2 levels and nitrogen inputs on vegetation succession. Ecol Appl 9:920–935Google Scholar
  51. Verboom J et al (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landsc Ecol 25:1289–1298CrossRefGoogle Scholar
  52. Vermulst JAPH, De Lange WJ (1999) An analytic-based approach for coupling models for unsaturated and saturated groundwater flow at different scales. J Hydrol 226:262–273CrossRefGoogle Scholar
  53. Vos CC et al (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731CrossRefGoogle Scholar
  54. Vos CC, Van der Hoek DCJ, Vonk M (2010) Spatial planning of a climate adaptation zone for wetland ecosystems. Landsc Ecol 25:1465–1477CrossRefGoogle Scholar
  55. Weiher E et al (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620CrossRefGoogle Scholar
  56. Witte JPM, Runhaar J, van Ek R (2008) Ecohydrological modelling for managing scarce water resources in a groundwater-dominated temperate system. In: Harper D, Zalewski M, Pacini N (eds) Ecohydrology: processes, models and case studies. CABI Publishing, Oxfordshire, pp 88–111Google Scholar
  57. Witte JPM et al (2012) An ecohydrological sketch of climate change impacts on water and natural ecosystems for the Netherlands: bridging the gap between science and society. Hydrol Earth Syst Sci 16:3945–3957CrossRefGoogle Scholar
  58. Wright IJ et al (2005) Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14:411–421CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. M. van Bodegom
    • 1
  • J. Verboom
    • 2
  • J. P. M. Witte
    • 1
    • 3
  • C. C. Vos
    • 2
  • R. P. Bartholomeus
    • 3
  • W. Geertsema
    • 2
  • A. Cormont
    • 2
  • M. van der Veen
    • 2
  • R. Aerts
    • 1
  1. 1.Department of Ecological Science, Subdepartment of Systems EcologyVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Wageningen UR Alterra, Specialisation LandscapeWageningenThe Netherlands
  3. 3.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations