Regional Environmental Change

, Volume 14, Issue 3, pp 1063–1072 | Cite as

Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany

  • N. Dolgener
  • L. Freudenberger
  • N. Schneeweiss
  • P. L. Ibisch
  • R. Tiedemann
Original Article

Abstract

Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.

Keywords

Brandenburg Climate change Distribution modelling Endangered species Fire-bellied toad Maxent 

Supplementary material

10113_2013_468_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2061 kb)

References

  1. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  2. Beebee T, Griffiths R (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285CrossRefGoogle Scholar
  3. Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001) Amphibian breeding and climate change. Conserv Biol 15:1804–1809CrossRefGoogle Scholar
  4. Bradley BA, Estes LD, Hole DG, Holness S, Oppenheimer M, Turner WR, Beukes H, Schulze RE, Tadross MA, Wilcove DS (2012) Predicting how adaptation to climate change could affect ecological conservation: secondary impacts of shifting agricultural suitability. Divers Distrib 18:425–437CrossRefGoogle Scholar
  5. Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121CrossRefGoogle Scholar
  6. Carey C, Heyer WR, Wilkinson J, Alford RA, Arntzen JW, Halliday T, Hungerford L, Lips KR, Middleton EM, Orchard SA, Rand AS (2001) Amphibian declines and environmental change: use of remote-sensing data to identify environmental correlates. Conserv Biol 15:903–913CrossRefGoogle Scholar
  7. Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genetics and Genomes 7:1237–1247CrossRefGoogle Scholar
  8. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98CrossRefGoogle Scholar
  9. Corn PS (2005) Climate change and amphibians. Anim Biodivers Conserv 28:59–67Google Scholar
  10. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240CrossRefGoogle Scholar
  11. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150CrossRefGoogle Scholar
  12. Dolgener N, Schröder C, Schneeweiss N, Tiedemann R (2012) Genetic population structure of the Fire-bellied toad Bombina bombina in an area of high population density: implications for conservation. Hydrobiol 689:111–120CrossRefGoogle Scholar
  13. Dolgener N, Freudenberger L, Schluck M, Schneeweiss N, Ibisch PL, Tiedemann R (in revision) Environmental Niche Factor Analysis (ENFA) relates environmental parameters to abundance and genetic diversity in an endangered amphibian, the Fire-bellied toad (Bombina bombina)Google Scholar
  14. Donnelly MA, Crump ML (1998) Potential effects of climate change on two neotropical amphibian assemblages. Climat Chang 39:541–561CrossRefGoogle Scholar
  15. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183
  16. Freudenberger L, Hobson P, Rupic S, Schluck M, Sauermann J, Kreft S, Selva N, Ibisch PL (2013) Spatial Road Disturbance Index (SPROADI) for conservation planning: a novel landscape index, demonstrated for the state of Brandenburg, Germany. Landscape Ecol. doi:10.1007/s10980-013-9887-8
  17. Gerstengarbe F-W, Badeck F, Hattermann FF, Krysanova V, Lahmer W, Lasch P, Stock M, Suckow F, Wechsung F, Werner PC (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven. PIK Report 83Google Scholar
  18. Geyer J, Kiefer I, Kreft S, Chavez V, Salafsky N, Jeltsch F, Ibisch PL (2011) Classification of climate-change-induced stresses on biological diversity. Conserv Biol 25:708–715CrossRefGoogle Scholar
  19. Gharadjedaghi B, Heimann R, Lenz K, Martin C, Pieper V, Schulz A, Vahabzadeh A, Finck P, Riecken U (2004) Verbreitung und Gefährdung schutzwürdiger Landschaften in Deutschland. Natur und Landschaft 79:71–81Google Scholar
  20. Girardello M, Griggio M, Whittingham MJ, Rushton SP (2010) Models of climate associations and distributions of amphibians in Italy. Ecol Res 25:103–111CrossRefGoogle Scholar
  21. Guisan A, Hofer U (2003) Predicting reptile distributions at the mesoscale: relation to climate and topography. J Biogeogr 30:1233–1243CrossRefGoogle Scholar
  22. Günther R, Schneeweiss N (1996) Rotbauchunke—Bombina bombina (LINNAEUS 1761). In: Günther R (ed) Die Amphibien und Reptilien Deutschlands. Gustav Fischer Verlag, Jena, pp 215–232Google Scholar
  23. Hansen M, DeFries R, Townshend J, Carroll M, Dimiceli C, Sohlberg R (2003) Vegetation continuous fields. MOD44B, 2001 Percent Tree Cover, Collection 3, University of Maryland, College ParkGoogle Scholar
  24. Hattermann FF, Conradt T (2007) Klimaszenarien und -folgen für den Brandenburger Raum Fachtagung Abwasserbilanz, www.abwasserbilanz.de
  25. Henle K, Dick D, Harpke A, Kühn I, Schweiger O, Settele J (2008) Climate Change Impacts on European Amphibians and Reptiles. Convention on the conservation of European Wildlife and natural habitats, 28th meeting StrasbourgGoogle Scholar
  26. Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531CrossRefGoogle Scholar
  27. Holsten A, Vetter T, Vohland K, Krysanova V (2009) Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol Model 220:2076–2087CrossRefGoogle Scholar
  28. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmink SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755CrossRefGoogle Scholar
  29. Huang S, Krysanova V, Österle H, Hattermann FF (2010) Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrol Process 24:3289–3306CrossRefGoogle Scholar
  30. Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature 410:681–684CrossRefGoogle Scholar
  31. Landesumweltamt Brandenburg (2011) http://www.brandenburg.de/cms/list.php/bbstart
  32. Levinsky I, Skov F, Svenning JC, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiv Conserv 16:3803–3816CrossRefGoogle Scholar
  33. Orlowsky B, Gerstengarbe FW, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92:209–223CrossRefGoogle Scholar
  34. Orlowsky B, Bothe O, Fraedrich K, Gerstengarbe FW, Zhu X (2010) Future climates from bootstrapped weather analogues: an application to the Yangtze river basin. J Clim 23:3509–3524CrossRefGoogle Scholar
  35. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  36. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  37. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  38. Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kühn I (2008) Climate and land use change impacts on plant distributions. Biol Lett 4:564–567CrossRefGoogle Scholar
  39. Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:61–167Google Scholar
  40. Reyer C, Bachinger J, Bloch R, Hattermann FF, Ibisch PL, Kreft S, Lasch P, Lucht W, Nowicki C, Spathelf P, Stock M, Welp W (2011) Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Reg Environ Chang 12:523–542CrossRefGoogle Scholar
  41. Schneeweiss N (1996) Zur Verbreitung und Bestandsentwicklung der Rotbauchunke in Brandenburg. In: Krone A, Kühnel KD (eds) RANA Sonderheft 1: Die Rotbauchunke (Bombina bombina)—Ökologie und Bestandssituation, pp 87–103Google Scholar
  42. Streck OE, Wisniewski N (1961) Verbreitung und Vorkommen der Lurche und Kriechtiere in der Mark Brandenburg. Märkische Heimat 5:260–270Google Scholar
  43. Stuart SN, Chanson J, Cox N, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786CrossRefGoogle Scholar
  44. Ultsch GR, Bradford DF, Freda J (1999) Physiology: coping with the environment. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 189–214Google Scholar
  45. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TCJ, Fromentin JM, Hoegh-GuldbergI O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Dolgener
    • 1
  • L. Freudenberger
    • 2
  • N. Schneeweiss
    • 3
  • P. L. Ibisch
    • 2
  • R. Tiedemann
    • 1
  1. 1.Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Faculty of Forest and Environment, Centre for Econics and Ecosystem ManagementUniversity for Sustainable Development EberswaldeEberswaldeGermany
  3. 3.Landesamt für Umwelt, Gesundheit und VerbraucherschutzNaturschutzstation RhinluchLinumGermany

Personalised recommendations