Regional Environmental Change

, Volume 14, Issue 3, pp 895–908 | Cite as

Evaluating the effect of flood damage-reducing measures: a case study of the unembanked area of Rotterdam, the Netherlands

  • Hans de Moel
  • Mathijs van Vliet
  • Jeroen C. J. H. Aerts
Original Article


Empirical evidence of increasing flood damages and the prospect of climatic change has initiated discussions in the flood management community on how to effectively manage flood risks. In the Netherlands, the framework of multi-layer safety (MLS) has been introduced to support this risk-based approach. The MLS framework consists of three layers: (i) prevention, (ii) spatial planning and (iii) evacuation. This paper presents a methodology to evaluate measures in the second layer, such as wet proofing, dry proofing or elevating buildings. The methodology uses detailed land-use data for the area around the city of Rotterdam (up to building level) that has recently become available. The vulnerability of these detailed land-use classes to flooding is assessed using the stage–damage curves from different international models. The methodology is demonstrated using a case study in the unembanked area of Rotterdam in the Netherlands, as measures from the second layer may be particularly effective there. The results show that the flood risk in the region is considerable: EUR 36 million p.a. A large part (almost 60 %) of this risk results from industrial land use, emphasising the need to give this category more attention in flood risk assessments. It was found that building level measures could substantially reduce flood risks in the region because of the relatively low inundation levels of buildings. Risk to residential buildings would be reduced by 40 % if all buildings would be wet-proofed, by 89 % if all buildings would be dry-proofed and elevating buildings over 100 cm would render the risk almost zero. While climate change could double the risk in 2100, such building level measures could easily nullify this effect. Despite the high potential of such measures, actual implementation is still limited. This is partly caused by the lack of knowledge regarding these measures by most Dutch companies and the legal impossibility for municipalities to enforce most of these measures as they would go beyond the building codes established at the national level.


Flood risk Risk modelling Damage-reducing measures Building codes 



This research was carried out in the framework of the Dutch National Research Programme “Knowledge for Climate” (theme 1) and the EU TURAS project. The authors would like to thank Jan Huizinga for providing the inundation data that was used in this study. We would like to thank the editors and two anonymous reviewers for their constructive comments.


  1. Aerts JCJH, Botzen WJ (2011) Flood-Resilient Waterfront Development in New York City: a study of flood insurance, building codes, and flood zoning. Ann NY Acad Sci 1227:1–82CrossRefGoogle Scholar
  2. Aerts JCJH, Sprong T, Bannink BA (2008) Aandacht voor veiligheid. 009/2008, Leven met Water, Klimaat voor Ruimte, DG Water.
  3. Apel H, Merz B, Thieken AH (2008) Quantification of uncertainties in flood risk assessments. Int J River Basin Manage 6(2):149–162CrossRefGoogle Scholar
  4. Apel H, Aronica GT, Kreibich H, Thieken AH (2009) Flood risk analyses-how detailed do we need to be? Nat Hazards 49(1):79–98CrossRefGoogle Scholar
  5. Baan PJA, Klijn F (2004) Flood risk perception and implications for flood risk management in the Netherlands. Int J River Basin Manage 2(2):113–122CrossRefGoogle Scholar
  6. Bouwer LM, Bubeck P, Aerts JCJH (2010) Changes in future flood risk due to climate and development in a Dutch polder area. Global Environ Change 20:463–471. doi: 10.1016/j.gloenvcha.2010.04.002 CrossRefGoogle Scholar
  7. Briene M, Koppert S, Koopman A, Verkennis A (2002) Financiele onderbouwing kengetallen hoogwaterschade. I7435, Netherlands Economic Institute (NEI), Rotterdam, The Netherlands (in Dutch)Google Scholar
  8. Bubeck P, de Moel H (2010) Sensitivity analysis of flood damage calculations for the river Rhine. 32 Report IVM, DG Waters, The NetherlandsGoogle Scholar
  9. Bubeck P, de Moel H, Bouwer LM, Aerts JCJH (2011) How reliable are projections of future flood damage? Nat Hazards Earth Syst Sci 11:3293–3306CrossRefGoogle Scholar
  10. Büchele B, Kreibich H, Kron A, Thieken A, Ihringer J, Oberle P, Merz B, Nestmann F (2006) Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks. Nat Hazards Earth Syst Sci 6(4):485–503CrossRefGoogle Scholar
  11. CBS (2008) Bestand bodemgebruik 2008. Den Haag, Centraal Bureau voor de Statistiek.
  12. CBS (2012) Statline. Accessed January 2012
  13. De Boer J, Botzen W, Terpstra T (2012) Percepties van burgers over binnen- en buitendijks wonen. Rotterdam, Gemeente Rotterdam (Rotterdam Climate Initiative) (in Dutch)Google Scholar
  14. De Kort R (2012) Kwetsbaarheid in het buitendijks gebied, analyse van de gevolgen van overstroming op vitale infrastructuur en stedelijke functies in Rotterdam. Stadsontwikkeling gemeente Rotterdam (in Dutch)Google Scholar
  15. De Moel H (2012) Uncertainty in flood risk. PhD dissertation thesis, VU University Amsterdam.
  16. De Moel H, Aerts JCJH (2011) Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Nat Hazards 58(1):407–425CrossRefGoogle Scholar
  17. De Moel H, van Alphen J, Aerts JCJH (2009) Flood maps in Europe—methods, availability and use. Nat Hazards Earth Syst Sci 9(2):289–301CrossRefGoogle Scholar
  18. De Moel H, Asselman NEM, Aerts JCHJ (2012) Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands. Nat Hazards Earth Syst Sci 12:1045–1058CrossRefGoogle Scholar
  19. Defra (2008) Developing the evidence base for flood resistance and resilience: summary report. R&DTechnical report FD2607/TR1. Environment Agency and the Department for Environment Food and Rural Affairs (DEFRA), LondonGoogle Scholar
  20. Dutta D, Herath S, Musiakec K (2003) A mathematical model for flood loss estimation. J Hydrol 277:24–49. doi: 10.1016/S0022-1694(03)00084-2 CrossRefGoogle Scholar
  21. FEMA (2009) Hazus MH MR4 Technical manual. Federal Emergency Management Agency, Washington, DC. Available at online at:
  22. Freni G, La Loggia G, Notaro V (2010) Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. Water Sci Technol 61(12):2979–2993CrossRefGoogle Scholar
  23. Grossi P, Kunreuther H, Windeler D (2005) An introduction to catastrophe models and insurance. In: Grossi P, Kunreuther H (eds) Catastrophe modeling: a new approach to managing risk. Springer Science+Business Media, Inc., Boston, pp 23–42CrossRefGoogle Scholar
  24. Hoes OAC (2007) Aanpak wateroverlast in polders op basis van risicobeheer. PhD dissertation, Technische Universiteit Delft (in Dutch)Google Scholar
  25. Huizinga HJ (2010) HSRR02: water safety: flood depth and extent. Available online at:
  26. ICPR (2002) Non-structural flood plain management: measures and their effectiveness. International Commission for the Protection of the RhineGoogle Scholar
  27. Jones CP, Coulbourne WL, Marschall J, Rogers SM Jr (2006) Evaluation of the National Flood Insurance Program’s building standards. Christopher Jones and Associates, Durham, USAGoogle Scholar
  28. Jongman B, Kreibich H, Apel H, Barredo JI, Bates PD, Feyen L, Gericke A, Neal J, Aerts JCJH, Ward PJ (2012) Comparative flood damage model assessment: towards a European approach. Nat Hazards Earth Syst Sci 12:3733–3752. doi: 10.5194/nhess-12-3733-2012 CrossRefGoogle Scholar
  29. Kadaster (2005) Top10vector. Topografische Dienst Kadaster, ApeldoornGoogle Scholar
  30. Kadaster (2011) Basisregistraties adressen en gebouwen. Topografische Dienst Kadaster, Apeldoorn.
  31. Klijn F, Baan PJA, De Bruijn KM, Kwadijk J (2007) Overstromingsrisico’s in nederland in een veranderend klimaat. Q4290, WL|delft hydraulics, Delft, Netherlands (in Dutch)Google Scholar
  32. Kok M, Huizinga HJ, Vrouwenvelder ACWM, Barendregt A (2005) Standaardmethode2004—schade en slachtoffers als gevolg van overstromingen. DWW-2005-005, RWS Dienst Weg- en Waterbouwkunde (in Dutch)Google Scholar
  33. Kreibich H, Thieken AH (2009) Coping with floods in the city of Dresden, Germany. Nat Hazards 51:423–436CrossRefGoogle Scholar
  34. Kreibich H, Thieken AH, Petrow Th, Müller M, Merz B (2005) Flood loss reduction of private households due to building precautionary measures—lessons learned from the Elbe flood in August. Nat Hazards Earth Syst Sci 5:117–126CrossRefGoogle Scholar
  35. Kreibich H, Seifert I, Merz B, Thieken AH (2010) Development of flemocs—a new model for the estimation of flood losses in the commercial sector. Hydrol Sci J 55:1302–1314. doi: 10.1080/02626667.2010.529815 CrossRefGoogle Scholar
  36. Luttik J (2000) The value of trees, water and open space as reflected by house prices in the Netherlands. Landsc Urban Plan 48:161–167CrossRefGoogle Scholar
  37. Manojlović N, Pasche E (2007) FLORETO-web based advisory tool for flood mitigation strategies for existing buildings. In: Ashley R, Garvin S, Pasche E, Vassilopoulos A, Zevenbergen C (eds) Advances in Urban Flood Management. Taylor and Francis, New YorkGoogle Scholar
  38. Meijers E, Hendriks M, de Greef P (2011) Regionale deltascenario’s Rijnmond-Drechtsteden. Deltaprogramma Rijnmond-DrechtstedenGoogle Scholar
  39. Merz B, Thieken AH (2009) Flood risk curves and uncertainty bounds. Nat Hazards 51(3):437–458. doi: 10.1007/s11069-009-9452-6 CrossRefGoogle Scholar
  40. Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci 4(1):153–163CrossRefGoogle Scholar
  41. Merz B, Thieken AH, Gocht M (2007) Flood risk mapping at the local scale: concepts and challanges. In: Begum S, Stive M, Hall J (eds) Advances in natural and technological hazards research. Springer, Dordrecht, The Netherlands, pp 231–251Google Scholar
  42. Merz B, Kreibich H, Schwarze R, Thieken AH (2010) Review article ‘assessment of economic flood damage’. Nat Hazards Earth Syst Sci 10:1697–1724. doi: 10.5194/nhess-10-1697-2010 CrossRefGoogle Scholar
  43. Meyer V, Scheuer S, Haase D (2009) A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat Hazards 48:17–39CrossRefGoogle Scholar
  44. Ministry I&E (2006) Spatial planning key decision Room for the river: explanatory memorandum. Ministry of Infrastructure and the Environment, The NetherlandsGoogle Scholar
  45. Ministry I&E (2009) National water plan. Ministry of Infrastructure and the Environment, The Netherlands (in Dutch)Google Scholar
  46. Ministry I&E (2011) Besluit algemene regels ruimtelijke ordening. Ministry of Infrastructure and the Environment, The Netherlands (in Dutch)Google Scholar
  47. Ministry I&E and Ministry of Economic Affairs (2012) Deltaprogramma 2013—werken aan de delta. Ministry of Infrastructure and the Environment and Ministry of Economic Affairs, The Hague, The NetherlandsGoogle Scholar
  48. Ministry of internal affairs (2011) Bouwbesluit 2012. Stb. 2011, 416 (in Dutch)Google Scholar
  49. Penning-Rowsell EC, Viavattene E, Pardoe J, Chatterton J, Parker D, Morris J (2010) The benefits of flood and coastal risk management: a handbook of assessment techniques—2010. Flood Hazard Research Centre, Middlesex University Press, LondonGoogle Scholar
  50. Poussin JK, Bubeck P, Aerts JCJH, Ward PJ (2012) Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse. Nat Hazards Earth Syst Sci 12:3455–3471. doi: 10.5194/nhess-12-3455-2012 CrossRefGoogle Scholar
  51. Scawthorn C, F.ASCE, Flores P, Blais N, Seligson H, Tate E, Chang S, Mifflin E, Thomas W, Murphy J, Jones C, Lawrence M (2006) HAZUS-MH Flood loss estimation methodology. II: Damage and loss assessment. Nat Hazards Rev 7(2):72–81Google Scholar
  52. Slootjes N, Jeuken A, Botterhuis T, Gao Q (2011) Resultaten MHW berekeningen t.b.v. probleemanalyse en verkenning hoekpunten voor het Deltaprogramma Rijnmond-Drechtsteden. 1204302-000, p 71, HKV lijn in water, Deltares (in Dutch)Google Scholar
  53. Smith DI (1994) Flood damage estimation—a review of urban stage–damage curves and loss functions. Water Sa 20:231–238Google Scholar
  54. Terpstra T, Gutteling JM (2008) Households’ Perceived Responsibilities in Flood Risk Management in The Netherlands. Int J Water Resour Dev 24(4):555–565Google Scholar
  55. Thieken AH, Olschewski A, Kreibich H, Kobsch S, Merz B (2008) Development and evaluation of flemops—a new flood loss estimation model for the private sector. In: Flood recovery, innovation and response I. WIT Press, Chichester, pp 315–324Google Scholar
  56. Van den Hurk B, Klein Tank A, Lenderink G, van Ulden A, van Oldenborgh GJ, Katsman C, van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI climate change scenarios 2006 for the Netherlands. KNMI scientific report WR 2006-01, De BiltGoogle Scholar
  57. Van Veelen P (ed) (2012) Adaptieve ontwikkelingsstrategieën in buitendijks gebied in de Regio Rotterdam, report WP2, HSRR3.1 (in Dutch)Google Scholar
  58. Van Vliet M (2012) Deelrapport ruimtelijke ordening en bouwvoorschriften—Juridische haalbaarheid van maatregelen Kop van Feijenoord. Amsterdam, Institute for Environmental Studies, VU University Amsterdam (in Dutch)Google Scholar
  59. Van Vliet M, Aerts JCJH (2012) Adaptation to climate change in urban water management—flood management in the Rotterdam Rijnmond Area. In: Grafton RQ, Daniell KA, Nauges C et al (eds) Understanding and managing urban water in Transition. Springer, New YorkGoogle Scholar
  60. Van Vliet M, Huizinga J, de Moel H, Eikelboom T, Vreugdenhil H, Koene W (2012) Meerlaagsveiligheid buitendijks—uitkomsten van de workshop in regio Rotterdam Drechtsteden. KfC 85/2012, Knowledge for Climate, Institute for Environmental Studies, HKV lijn in waterGoogle Scholar
  61. Vanneuville W, Maddens R, Collard C, Bogaert P, De Maeyer P, Antrop M (2006) Impact op mens en economie t.g.v. overstromingen bekeken in het licht van wijzigende hydraulische condities, omgevingsfactoren en klimatologische omstandigheden. MIRA/2006/02, Vakgroep Geografie, Universiteit Gent, Gent, Belgium (in Dutch)Google Scholar
  62. Veerbeek W, Zevenbergen C, Gersonius B (2010) Flood risk in unembanked areas part C: vulnerability assessment based on direct flood damages. KfC report number 022C/2010. National research programme Knowledge for ClimateGoogle Scholar
  63. Ward PJ, De Moel H, Aerts JCJH (2011) How are flood risk estimates affected by the choice of return periods? Nat Hazards Earth Syst Sci 11:3181–3195. doi: 10.5194/nhess-11-3181-2011 CrossRefGoogle Scholar
  64. Wind HG, Nierop TM, de Blois CJ, de Kok JL (1999) Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resour Res 35(11):3459–3465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans de Moel
    • 1
    • 2
  • Mathijs van Vliet
    • 1
    • 2
    • 3
  • Jeroen C. J. H. Aerts
    • 1
    • 2
  1. 1.Institute for Environmental StudiesVU UniversityAmsterdamThe Netherlands
  2. 2.Amsterdam Global Change InstituteVU UniversityAmsterdamThe Netherlands
  3. 3.Public Administration and Policy GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations