Skip to main content

Advertisement

Log in

The impact of climate change on rainfall Intensity–Duration–Frequency (IDF) curves in Alabama

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Changes in the hydrologic cycle due to increase in greenhouse gases are projected to cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce vulnerability. Since rainfall characteristics are often used to design water management infrastructures, reviewing and updating rainfall characteristics (i.e., Intensity–Duration–Frequency (IDF) curves) for future climate scenarios is necessary. This study was undertaken to assess expected changes in IDF curves from the current climate to the projected future climate. To provide future IDF curves, 3-hourly precipitation data simulated by six combinations of global and regional climate models were temporally downscaled using a stochastic method. Performance of the downscaling method was evaluated, and IDF curves were developed for the state of Alabama. The results of all six climate models suggest that the future precipitation patterns for Alabama are expected to veer toward less intense rainfalls for short duration events. However, for long duration events (i.e., >4 h), the results are not consistent across the models. Given a large uncertainty existed on projected rainfall intensity of these six climate models, developing an ensemble model as a result of incorporating all six climate models, performing an uncertainty analysis, and creating a probability based IDF curves could be proper solutions to diminish this uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhunya P, Jain S, Ojha C, Agarwal A (2007) Simple parameter estimation technique for three-parameter generalized extreme value distribution. J Hydrol Eng 12(6):682–689

    Article  Google Scholar 

  • Brown SA, Stein SM, Warner JC (1996) Urban drainage design manual, hydraulic engineering circular no. 22

  • Choi J, Socolofsky S, Olivera F (2008) Hourly disaggregation of daily rainfall in Texas using measured hourly precipitation at other locations. J Hydrol Eng 13(6):476–487

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, Berlin

    Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Durrans SR, Brown PA (2001) Estimation and internet-based dissemination of extreme rainfall information. Transportation Research Record 1743, Transportation Research Board, National Research Council, pp 41–48

  • Feddersen H, Andersen U (2005) A method for statistical downscaling of seasonal ensemble predictions. Tellus Series A Dyn Meteorol Oceanogr 57:398–408

    Article  Google Scholar 

  • Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33(1):27–41

    Article  Google Scholar 

  • Hershfield DM (1961) Technical Paper No. 40, Rainfall Frequency Atlas of the United States. Cooperative Studies Section, Hydrologic Services Division for Engineering Division, Soil Conservation Service U.S. Department of Agriculture, Washington

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme value distribution by method of probability weighted moments. Technometrics 27(3):251–261

    Article  Google Scholar 

  • Islam S, Entekhabi D, Bras RL (1990) Parameter estimation and sensitivity analysis for the modified Bartlett–Lewis rectangular pulses model of rainfall. J Geophys Res 95(D3):2093–2100

    Article  Google Scholar 

  • Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res 115, D10101. doi:10.1029/2009JD012882

  • Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • McCuen R (1998) Hydrologic analysis and design. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Mearns LO et al (2007, updated 2011) The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid data portal, Boulder, CO. Data downloaded 2011-01-03. doi:10.5065/D6RN35ST

  • Mearns LO, Gutowski WJ, Jones R, Leung LY, McGinnis S, Nunes AMB, Qian Y (2009) A regional climate change assessment program for North America. EOS 90(36):311–312

    Article  Google Scholar 

  • NCDC Online Climate Data Directory. NOAA National Climatic Data Center (NCDC). http://www.ncdc.noaa.gov/oa/climate/climatedata.html

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  • Prodanovic P, Simonovic SP (2007) Development of rainfall intensity duration frequency curves for the City of London under the changing climate. Water Resour Res Report, London

    Google Scholar 

  • Richard J, Wilfran MO, Simon T (2007, updated 2011) The North American Regional Climate Change Assessment Program dataset, National Center for Atmospheric Research Earth System Grid data portal, Boulder, CO. Data downloaded 2011-05-13. http://www.earthsystemgrid.org/project/NARCCAP.html

  • Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc Royal Soc A London 410:269–288

    Article  Google Scholar 

  • Schneider SH et al (2007) Assessing key vulnerabilities and the risk from climate change. Climate change 2007: impacts, adaptation and vulnerability contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. ML Parry, OF

  • Sebastien B, Daniel C, René L (2007, updated 2011) The North American Regional Climate Change Assessment Program dataset, National Center for Atmospheric Research Earth System Grid data portal. Boulder, CO. Data downloaded 2011-05-14. http://www.earthsystemgrid.org/project/NARCCAP.html

  • Sharma D, Das Gupta A, Babel MS (2007) Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping river basin, Thailand. Hydrol Earth Syst Sci 11(4):1373–1390

    Article  Google Scholar 

  • Socolofsky S, Adams E, Entekhabi D (2001) Disaggregation of daily rainfall for continuous watershed modeling. J Hydrol Eng 6(4):300–309

    Article  Google Scholar 

  • Von Storch H (1999) Representation of conditional random distributions as a problem of “spatial” interpolation. In: Gòmez-Hernàndez J, Soares A, Froidevaux R (eds) geoENV II—Geostatistics for Environmental Applications, Kluwer Academic Publishers, Dordrecht, Boston, pp 13–23. ISBN 0-7923-5783-3

  • Wolcott SB, Mroz M, Basile J (2009) Application of Northeast Regional Climate Center Research results for the purpose of evaluating and updating Intensity-Duration-Frequency (IDF) Curves. Case Study: Rochester, New York. In: Proceedings of world environmental and water resources congress 2009. Kansas City, Missouri

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate outputs. Clim Change 62(1–3):189–216

    Article  Google Scholar 

  • Wright P, DeGeatano A, Merkel W, Metcalf L, D. Quan Q, Zarrow D (2010) Updating rainfall intensity duration curves in the Northeast for runoff prediction. In: Proceedings of ASABE annual international meeting. Pittsburgh, Pennsylvania

Download references

Acknowledgments

We wish to thank National Oceanic and Atmospheric Agency (NOAA) Regional Integrated Sciences and Assessments (RISA) program for funding this project, the North American Regional Climate Change Assessment Program (NARCCAP) for providing the data, and two anonymous reviewers for providing valuable comments that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golbahar Mirhosseini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirhosseini, G., Srivastava, P. & Stefanova, L. The impact of climate change on rainfall Intensity–Duration–Frequency (IDF) curves in Alabama. Reg Environ Change 13 (Suppl 1), 25–33 (2013). https://doi.org/10.1007/s10113-012-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0375-5

Keywords

Navigation