Regional Environmental Change

, Volume 13, Issue 2, pp 235–248 | Cite as

Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia

  • Jorge Velásquez-TibatáEmail author
  • Paul Salaman
  • Catherine H. Graham
Original Article


Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.


Conservation Species distribution modeling Tropical Andes hotspot Tumbes-Choco-Magdalena hotspot 



This project was possible because of several bioinformatics initiatives to make Colombian bird data accessible, as well as individual field researchers who shared their observations. We thank Project Biomap staff and museum curators: J. C. Verhelst, D. Arzuza, A. Morales, C. Bohórquez, N. Cleere, S. de la Zerda, L. Rosselli, D. Caro, R. Prys–Jones, J. Stewart, A. Espinal, D. Estepa, and J. V. Rodriguez. W. Naranjo helped with Dataves on behalf of RNOA. D. Caro provided data from Fundación ProAves. A. Castaño, A. Cuervo, A. López, D. Calderón, E. Briceño, F. Quiñonez, G. Chávez, J. Avendaño, J. Ochoa, J.P. López, J. Ruiz, M. Moreno, O. Cortés, P. Flórez, R. Sedano, S. Córdoba, S. Ocampo, T. Donegan, and W. Naranjo contributed unpublished records and/or lent their expertise to evaluate the performance of earlier distribution models. The manuscript benefited from comments by R. Akçakaya, L. Brown, L. Dávalos, A. Etter, J. Knowlton, M. Mark, L. Renjifo, S. Munch and greatly improved thanks to suggestions by two anonymous reviewers. S. Phillips assisted with MAXENT, R. Hijmans with Worldclim, and N. Urbina provided an updated shapefile of protected areas of Colombia. Financial support was provided by NASA grants NNG05GB37 to C.H.G and NNX08AU26H to J.V.T.

Supplementary material

10113_2012_329_MOESM1_ESM.xlsx (107 kb)
Appendix 1. Landscape statistics and protection for threatened and range-restricted birds of Colombia under climate change. (XLSX 108 kb)
10113_2012_329_MOESM2_ESM.docx (1.4 mb)
Appendix 2. Comparison among bioclimatic variables from IPCC’s third and fourth assessment reports for Colombia. (DOCX 1437 kb)
10113_2012_329_MOESM3_ESM.docx (44 kb)
Appendix 3. General linear model analyses of IUCN category and projected change in range size relationship. (DOCX 45 kb)


  1. Akçakaya HR, Butchart SHM, Mace GM, Stuart SN, Hilton-Taylor C (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Chang Biol 12(11):2037–2043CrossRefGoogle Scholar
  2. Anciães M, Peterson AT (2006) Climate change effects on Neotropical manakin diversity based on ecological niche modeling. Condor 108(4):778–791CrossRefGoogle Scholar
  3. Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98(1):3–16CrossRefGoogle Scholar
  4. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16(6):743–753CrossRefGoogle Scholar
  5. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Chang Biol 10(9):1618–1626CrossRefGoogle Scholar
  6. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14(6):529–538CrossRefGoogle Scholar
  7. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14(5):484–492CrossRefGoogle Scholar
  8. Balanya J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313(5794):1773–1775CrossRefGoogle Scholar
  9. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Chang Biol 13(7):1368–1385CrossRefGoogle Scholar
  10. BirdLife International (2008) The BirdLife checklist of the birds of the world, with conservation status and taxonomic sources. Version 1. BirdLife International. Accessed 2 August 2008
  11. Brommer JE, Rattiste K, Wilson AJ (2008) Exploring plasticity in the wild: laying date-temperature reaction norms in the common gull Larus canus. Proc R Soc B Biol Sci 275(1635):687–693CrossRefGoogle Scholar
  12. Brooks T, De Silva N, Foster M, Hoffmann M, Knox D, Langhammer P, Pilgrim J, Ratledge N, Sweeting A (2009) Biodiversity Hotspots. Conservation International. Accessed 3 March 2009
  13. Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61(12):2925–2941CrossRefGoogle Scholar
  14. Cadena CD, Loiselle BA (2007) Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography 30(4):491–504Google Scholar
  15. Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Nat Acad Sci. doi: 10.1073/pnas.0809320106 Google Scholar
  16. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026CrossRefGoogle Scholar
  17. Coope GR (2004) Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos Trans R Soc Lond Ser B Biol Sci 359(1442):209–214CrossRefGoogle Scholar
  18. Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18(3):534–544CrossRefGoogle Scholar
  19. Dávalos LM, Bejarano AC, Hall MA, Correa HL, Corthals A, Espejo OJ (2011) Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots. Environ Sci Technol 45(4):1219–1227CrossRefGoogle Scholar
  20. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391(6669):783–786CrossRefGoogle Scholar
  21. Dudley N (2008) Guidelines for applying protected area management categories. Gland, SwitzerlandCrossRefGoogle Scholar
  22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151CrossRefGoogle Scholar
  23. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342CrossRefGoogle Scholar
  24. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  25. Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Publications of the European Commission, LuxembourgGoogle Scholar
  26. Forero-Medina G, Joppa L, Pimm SL (2011) Constraints to species’ elevational range shifts as climate changes. Conserv Biol 25(1):163–171CrossRefGoogle Scholar
  27. Franco P, Saavedra-Rodriguez CA, Kattan GH (2007) Bird species diversity captured by protected areas in the Andes of Colombia: a gap analysis. Oryx 41(1):57–63CrossRefGoogle Scholar
  28. Gaston KJ (1994) Rarity. Chapman and Hall, LondonCrossRefGoogle Scholar
  29. Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407CrossRefGoogle Scholar
  30. Graham CH, Silva N, Velásquez-Tibatá J (2010) Evaluating the potential causes of range limits of Andean birds. J Biogeogr 37(10):1863–1875Google Scholar
  31. Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta F (2011) Species distribution modeling and the challenge of predicting future distributions. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, São José dos Campos, Brazil, pp 295–310Google Scholar
  32. Green RE, Collingham YC, Willis SG, Gregory RD, Smith KW, Huntley B (2008) Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. Biol Lett 4(5):599–602CrossRefGoogle Scholar
  33. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186CrossRefGoogle Scholar
  34. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5(3):131–138CrossRefGoogle Scholar
  35. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30(6):751–777CrossRefGoogle Scholar
  36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978CrossRefGoogle Scholar
  37. Hilty SL, Brown B (1986) A guide to the birds of Colombia. Princeton University Press, Princeton, NJGoogle Scholar
  38. Hilty SL, Meyer de Schauensee R (2003) Birds of Venezuela, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  39. Hoffmann D, Oetting I, Alberto-Arnillas C, Ulloa R (2011) Climate change and protected areas in the tropical Andes. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, São José dos Campos, Brazil, pp 311–325Google Scholar
  40. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  41. Huntley B, Webb T III (1989) Migration: species’ response to climatic variation cased by changes in the earth’s orbit. J Biogeogr 16(1):5–19CrossRefGoogle Scholar
  42. IDEAM (2010) Informe Anual sobre el Estado del Medio Ambiente y los Recursos Naturales Renovables en Colombia—Bosques 2009. Instituto de Hidrologia, Meteorología y Estudios Ambientales, Bogotá DCGoogle Scholar
  43. IUCN (2001) IUCN red list categories and criteria, 3.1 edn. IUCN–The World Conservation Union, Gland, SwitzerlandGoogle Scholar
  44. IUCN SPSC (2010) Guidelines for using the IUCN red list categories and criteria. Version 8.1Google Scholar
  45. Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manag 254(3):390–406CrossRefGoogle Scholar
  46. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12(4):334–350CrossRefGoogle Scholar
  47. Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4(5):560–563CrossRefGoogle Scholar
  48. Klein C, Wilson K, Watts M, Stein J, Berry S, Carwardine J, Smith MS, Mackey B, Possingham H (2009) Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecol Appl 19(1):206–217CrossRefGoogle Scholar
  49. Latimer AM, Banerjee S, Sang H, Mosher ES, Silander JA (2009) Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol Lett 12(2):144–154CrossRefGoogle Scholar
  50. Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS One 3(6):e2502CrossRefGoogle Scholar
  51. Loiselle BA, Graham CH, Goerck JM, Ribeiro MC (2010) Assessing the impact of deforestation and climate change on the range size and environmental nice of bird species in the Atlantic forests, Brazil. J Biogeogr 37(7):1288–1301CrossRefGoogle Scholar
  52. Malcolm JR, Liu CR, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20(2):538–548CrossRefGoogle Scholar
  53. Manne LL, Pimm SL (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Anim Conserv 4:221–229CrossRefGoogle Scholar
  54. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  55. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefGoogle Scholar
  56. Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  57. Olson DM, Dinerstein E (1998) The global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12(3):502–515CrossRefGoogle Scholar
  58. Paynter RA (1982) Ornithological gazetteer of Venezuela. Museum of Comparative Zoology. Harvard University, Cambridge, MACrossRefGoogle Scholar
  59. Paynter RA (1997) Ornithological gazetteer of Colombia. Museum of Comparative Zoology. Harvard University, Cambridge, MACrossRefGoogle Scholar
  60. Paynter RA, Traylor MA (1977) Ornithological gazetteer of Ecuador. Museum of Comparative Zoology. Harvard University, Cambridge, MAGoogle Scholar
  61. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371CrossRefGoogle Scholar
  62. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117CrossRefGoogle Scholar
  63. Peh KSH (2007) Potential effects of climate change of elevational distributions of tropical birds in Southeast Asia. Condor 109(2):437–441CrossRefGoogle Scholar
  64. Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416(6881):626–629CrossRefGoogle Scholar
  65. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175CrossRefGoogle Scholar
  66. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  67. Phillips SJ, Williams P, Midgley G, Archer A (2008) Optimizing dispersal corridors for the cape proteaceae using network flow. Ecol Appl 18(5):1200–1211CrossRefGoogle Scholar
  68. Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Chang Biol 14(8):1703–1720CrossRefGoogle Scholar
  69. Remsen JV, Cardiff SW (1990) Patterns of elevational and latitudinal distribution, including a niche switch in some guans (Cracidae) of the Andes. Condor 92(4):970–981CrossRefGoogle Scholar
  70. Renjifo LM, Kattan GH, Kattan GH, López-Lánus B (eds) (2002) Libro rojo de aves de Colombia. Instituto de Investigaciones Biologicas Alexander von Humboldt, Bogotá DCGoogle Scholar
  71. Ridgely RS, Greenfield PJ (2001) The birds of Ecuador. Comstock Pub, IthacaGoogle Scholar
  72. Ridgely RS, Tudor G, Brown WL (1989) The birds of South America, vol 1. University of Texas Press, AustinGoogle Scholar
  73. Ridgely RS, Tudor G, Brown WL (1994) The birds of South America, vol 2. Austin, TXGoogle Scholar
  74. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons EJ (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 13(1):288–299CrossRefGoogle Scholar
  75. Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New YorkGoogle Scholar
  76. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  77. Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) Endemic bird areas of the world: priorities for biodiversity conservation. BirdLife International, CambridgeGoogle Scholar
  78. Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, ChicagoGoogle Scholar
  79. Stralberg D, Jongsomjit D, Howell CA, Snyder MA, Alexander JD, Wiens JA, Root TL (2009) Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS One 4(9):e6825CrossRefGoogle Scholar
  80. Terborgh J, Weske JS (1975) Role of competition in distribution of Andean birds. Ecology 56(3):562–576CrossRefGoogle Scholar
  81. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148CrossRefGoogle Scholar
  82. Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Chang Biol 12(3):424–440CrossRefGoogle Scholar
  83. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152CrossRefGoogle Scholar
  84. Vásquez VH, Serrano MA (2009) Las áreas naturales protegidas de Colombia. Conservación Internacional, BogotáGoogle Scholar
  85. Williams P, Hannah L, Andelman S, Midgley G, Araújo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19(4):1063–1074CrossRefGoogle Scholar
  86. Young BF, Franke I, Hernandez PA, Herzog SK, Paniagua L, Tovar C, Valqui T (2009) Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126(3):554–565CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jorge Velásquez-Tibatá
    • 1
    Email author
  • Paul Salaman
    • 2
  • Catherine H. Graham
    • 1
  1. 1.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  2. 2.World Land Trust-USWashingtonUSA

Personalised recommendations