Skip to main content

Advertisement

Log in

Shifting maize cultivation and secondary vegetation in the Southern Yucatán: successional forest impacts of temporal intensification

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Shifting cultivation around the Calakmul Biosphere Reserve of Mexico, part of the Mesoamerican Biological Corridor, appears to be intensifying temporally through reductions in crop–fallow cycles, with potential impacts on species diversity in the regenerating forest patches surrounding the reserve. This paper documents the temporal intensity of shifting maize cultivation in the region and links it to the species diversity found in secondary vegetation of different ages following different crop–fallow cycles. It finds that younger secondary growth, which is increasing under intensification, has less diversity in species composition. Simultaneously, the concentration of cultivation practices appears to foster more patches in older and more species-diverse vegetation. The implications for the preservation of the region’s forest remain uncertain, however, given the spatial concentration of open lands along two key axes, one which dissects the reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abizaid C, Coomes OT (2004) Land use and forest fallowing dynamics in seasonally dry tropical forests of the southern Yucatán Peninsula, Mexico. Land Use Policy 21:71–84

    Article  Google Scholar 

  • Álvarez-Yépiz JC, Martinez-Yrizar A, Burquez A, Linquist C (2008) Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forest in northwestern Mexico. For Ecol Manag 256:355–366

    Article  Google Scholar 

  • Boserup E (1965) The conditions of agricultural growth: the economics of agrarian change under population pressure. Aldine-Atherton, Chicago

    Google Scholar 

  • Boserup E (1988) Population growth as a stimulant to agricultural development. In: Steinmann G, Zimmermann KF, Heilig G (eds) Probleme und Chancen demographischer Entwicklungen in der dritten Welt. Springer, New York, pp 61–75

    Google Scholar 

  • Brookfield HC (1984) Intensification revisited. Pac View 25:15–44

    Google Scholar 

  • Brookfield HC (1993) Notes on the theory of land management. PLEC News Views 1:28–32

    Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32

    Article  Google Scholar 

  • Brown D, Schreckenberg K (1998) Shifting cultivators as agents of deforestation: assessing the evidence. Nat Resour Perspect 29:1–14

    Google Scholar 

  • Burgos A, Maass JM (2004) Vegetation change associated with land-use in tropical dry forest areas of Western México. Agric Ecosyst Environ 104:475–481

    Article  Google Scholar 

  • Centeno ELR (1989) Análisis estructural de cuatro etapas sucesionales de selva mediana subperennifolia en la región de Escárcega, Campeche. Tesis de Licenciatura, Universidad Autónoma de Chapingo, Estado de México, México

  • Chavelas-Pólito J (1968) Estudio florístico-sinecológico del campo experimental forestal “El Tormento”, Escárcega, Campeche. In: Comisión de estudios sobre la ecología de Dioscóreas. Instituto nacional de Investigaciones Forestales, V Informe, México, D.F., pp 130–221

  • Chavelas-Pólito J, Contreras G (1990) Caracterización de la estructura de acahuales de diferentes edades. Taller internacional sobre investigación en silvicultura y manejo de selvas. SARH/INIFAP, México, D.F., México

    Google Scholar 

  • Chidumayo EN (1987) A shifting cultivation land use system under population pressure in Zambia. Agrofor Syst 5:15–25

    Article  Google Scholar 

  • Daily GC, Ceballos G, Pacheco J, Suzan G, Sánchez-Azofeifa A (2003) Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826

    Article  Google Scholar 

  • DeFries R, Hansen A, Turner BL II, Reid R, Liu J (2007) Land use change around protected areas: management to balance human needs and ecological function. Ecol Appl 17:1031–1038

    Article  Google Scholar 

  • Doolittle WE (1984) Agricultural change as an incremental process. Ann Ass Am Geogr 74:124–137

    Article  Google Scholar 

  • Eastmond A, Faust B (2006) Farmers, fires and forests: a green alternative to shifting cultivation for conservation of the Maya forest. Landsc Urban Plan 74:267–284

    Article  Google Scholar 

  • Ewel JJ (1977) Differences between wet and dry successional tropical ecosystems. Geo Eco Trop 1:103–117

    Google Scholar 

  • Ewel JJ (1980) Tropical succession: manifold routes to maturity. Biotropica 12:2–7

    Article  Google Scholar 

  • Figueroa F, Sánchez-Cordero V (2008) Effectiveness of natural protected areas to prevent land use and land cover change in México. Biodivers Conserv 17:3223–3240

    Article  Google Scholar 

  • Figueroa F, Sánchez-Cordero V, Meave JA, Trejo I (2009) Socio-economic context of land use and land cover change in Mexican biosphere reserves. Environ Conserv 3:180–191

    Article  Google Scholar 

  • Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first hundred years of succession. Trends Ecol Evol 11:119–124

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin F, Stuart C, Michael T, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  Google Scholar 

  • Fujisaka S, Hurtado L, Uribe R (1996) A working classification of slash-and-burn agricultural systems. Agrofor Syst 34:151–169

    Article  Google Scholar 

  • Gehring C, Denich M, Vlek PLG (2005) Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J Trop Ecol 21:519–527

    Article  Google Scholar 

  • Gleave MB (1996) The length of the fallow period in tropical fallow farming systems: a discussion with evidence from Sierra Leone. Geogr J 162:14–24

    Article  Google Scholar 

  • González-Iturbe JA, Olmsted I, Tun Dzul F (2002) Tropical dry forest recovery after long term Henequen (sisal, Agave fourcroydes Lem.) plantation in northern Yucatan, Mexico. For Ecol Manag 167:67–82

    Article  Google Scholar 

  • Hallé F, Oldeman RA, Tomlinson PB (1978) Tropical trees and forests an architectural analysis. Springer, New York

    Google Scholar 

  • Haug GH, Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1735

    Article  CAS  Google Scholar 

  • Ickowitz A (2006) Shifting cultivation and deforestation in tropical Africa: critical reflections. Dev Change 37:599–626

    Article  Google Scholar 

  • Illsley CE, Hernández-Xolocotzi E (1982) La vegetación en relación a la producción agrícola en el ejido de Yaxcaba, Yucatán. In: Hernández Xolocotzi E, Padilla I, Ortega R (eds) Seminario sobre producción agrícola en Yucatán. Gobierno del Estado de Yucatán, Mérida, México, pp 343–371

    Google Scholar 

  • Joosten JHL (1962) Wirtschaftliche und agrarpolitische Aspekte tropischer Landbausysteme (mimeo). Institut für landwirtschaftliche Betriebslehre, Göttingen, Germany

    Google Scholar 

  • Kennard DK (2002) Secondary forests succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. J Trop Ecol 18:53–66

    Article  Google Scholar 

  • Klepeis P, Vance C, Keys E, Macario Mendoza P, Turner BL II (2004) Subsistence sustained: swidden or milpa cultivation. In: Turner BL II, Geoghegan J, Forster DR (eds) Integrated land-change science and tropical deforestation in the southern Yucatán: final frontiers. Oxford University Press, Oxford, pp 189–207

    Google Scholar 

  • Lawrence D (2004) Erosion of tree diversity during 200 years of shifting cultivation in Bornean rain forest. Ecol Appl 14:1855–1869

    Article  Google Scholar 

  • Lawrence D (2005) Biomass accumulation after 10–200 years of shifting cultivation in Bornean rain forest. Ecology 86:26–33

    Article  Google Scholar 

  • Lawrence D, Suma V, Mogea JP (2005) Change in species composition with repeated shifting cultivation: limited role of soil nutrients. Ecol Appl 15:1952

    Article  Google Scholar 

  • Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, Eaton J (2007) Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc Natl Acad Sci 104:20696–20701

    Article  CAS  Google Scholar 

  • Lebrija-Trejos E, Bongers F, Perez-Garcia EA, Meave JA (2008) Successional change and resilience of very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431

    Google Scholar 

  • Levy-Tacher S (1990) Sucesión secundaria en Yucatán: antecedentes para su manejo. Tesis de Maestría. Colegio de Postgraduados, Chapingo, Estado de México, México

    Google Scholar 

  • Manzanilla H (1980) Los sitios permanentes de investigación silvícola del INIFAP. Un sistema integrado para iniciarse en el cultivo de los ecosistemas forestales. SARH-SDFAF-INIFAP, México, D.F., México

  • Marín-Spiotta E, Ostertag R, Silver WL (2007) Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecol Appl 17:828–839

    Article  Google Scholar 

  • McConnel W, Keys E (2005) Meta-analysis of agricultural change. In: Moran E, Ostrom E (eds) Seeing the forest and the trees. MIT Press, Cambridge, MA, pp 325–353

    Google Scholar 

  • McLaren KP, McDonald MA (2003) Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica. For Ecol Manag 180:99–111

    Article  Google Scholar 

  • MEA-Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mertz O (2002) The relationship between fallow length and crop yields in shifting cultivation: a rethinking. Agrofor Syst 55:149–159

    Article  Google Scholar 

  • Mertz O, Wadley RL, Nielsen U, Bruun TB, Colfer CJP, De Neergaard A, Jepsen MR, Martinussen T, Zhao Q, Noweg GT, Magid J (2008) A fresh look at shifting cultivation: fallow length an uncertain indicator of productivity. Agric Syst 96:75–84

    Article  Google Scholar 

  • Mertz O, Leisz SJ, Heinimann A, Rerkasem K, Thiha, Dressler W, Pham VC, Vu KC, Schmidt-Vogt D, Colfer CJP, Epprecht M, Padoch C, Potter L (2009) Who counts? Demography of swidden cultivators in Southeast Asia. Hum Ecol. doi:10.1007/s1074450099249y

  • Miranda F, Hernández Xolocotzi E (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot Mexico 28:29–179

    Google Scholar 

  • Murphy PG, Lugo AE (1986a) Ecology of tropical dry forests. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986b) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock S, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34

    Chapter  Google Scholar 

  • Netting RM (1993) Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture. Stanford University Press, Stanford, CA

    Google Scholar 

  • Ochoa-Gaona S, Hernández-Vázquez F, de Long BHJ, Gurri-García FD (2007) Pérdida de diversidad florística ante un gradiente de intensificación del sistema agrícola de roza-tumba y quema: un estudio de caso en la Selva Lacandona, Chiapas, México. Bol Soc Bot Mexico 81:65–80

    Google Scholar 

  • Odum EP (1985) Ecología. Interamericana S.A de C.V, México, D.F., pp 158–178

    Google Scholar 

  • Pascual U, Barbier EB (2006) Deprived land-use intensification in shifting cultivation: the population pressure hypothesis revisited. Agric Econ 34:155–165

    Article  Google Scholar 

  • Peña-Claros M (2003) Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica 4:450–461

    Google Scholar 

  • Pennington TD, Sarukhán J (1998) Árboles tropicales de México: Manual para la identificación de las principales especies. Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, D.F., p 521

    Google Scholar 

  • Pérez-Salicrup DR (2004) Forest types and their implications. In: Turner BL II, Geoghegan J, Forster DR (eds) Integrated land-change science and tropical deforestation in the southern Yucatán: final frontiers. Oxford University Press, Oxford, pp 63–80

    Google Scholar 

  • Pinard MA, Putz FE, Rumiz D, Guzman R, Jardin A (1999) Ecological characterization of tree species for guiding forest management decisions in seasonally dry forests in Lomerio, Bolivia. For Ecol Manag 113:201–213

    Article  Google Scholar 

  • Radel C, Schmook B (2008) Male transnational migration and its linkages to land use change in a southern Campeche ejido. J Lat Am Geogr 7:59–84

    Google Scholar 

  • Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A (2007) Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For Ecol Manag 253:38–47

    Article  Google Scholar 

  • Roy Chowdhury R, Turner BL II (2006) Reconciling agency and structure in empirical analysis: smallholder land use in the southern Yucatán, Mexico. Ann Ass Am Geogr 96:302–322

    Article  Google Scholar 

  • Ruthenberg H (1980) Farming systems in the tropics. Claredon Press, Oxford

    Google Scholar 

  • Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. J Ecol 76:938–958

    Article  Google Scholar 

  • Sánchez PA (1976) Properties and management of soils in the tropics. Wiley, New York

    Google Scholar 

  • Sarukhán J, Hernández Xolocotzi E (1970) Sinecología de las selvas de Terminalia amazonia en la vertiente del Golfo de México: análisis de la metodología de estudio. Bol Inst For Latinoamericano 34:3–20

    Google Scholar 

  • Schneider L, Geoghegan J (2006) Land abandonment in an agricultural frontier after a plant invasion: the case of bracken fern in southern Yucatán, Mexico. Agric Res Econ Rev 35:1–11

    Google Scholar 

  • Sheil D (2001) Conservation and biodiversity monitoring in the tropics: realities, priorities, and distractions. Conserv Biol 15:1179–1182

    Article  Google Scholar 

  • Shriar AJ (2000) Agricultural intensity and its measurement in frontier regions. Agrofor Syst 49:301–318

    Article  Google Scholar 

  • Sosa V, Flores S, Rico-Gray V, Lira R, Ortiz JJ (1985) Etnoflora yucatanense. Lista florística y sinonimia maya. Fascículo 1. Instituto Nacional de Investigaciones sobre Recursos Bióticos (INIREB), Xalapa, Veracruz, México

    Google Scholar 

  • Téllez-Valdés O, Sousa-Sánchez M, Cabrera E (1982) Imágenes de la Flora Quintanarroense. CIQRO, Puerto Morelos, Quintana Roo, México

    Google Scholar 

  • Turner BL II (2009) Sustainability and forest transitions in the southern Yucatán: the land architecture approach. Land Use Policy. doi:10.1016/j.landusepol.2009.03.006

  • Turner BL II, Brush SB (1987) Comparative farming systems. Guilford Press, New York

    Google Scholar 

  • Turner BL II, Doolittle WE (1978) The concept and measure of agricultural intensity. Prof Geogr 30:297–301

    Article  Google Scholar 

  • Turner BL II, Hanham RD, Portararo AV (1977) Population pressure and agricultural intensity. Ann Ass Am Geogr 67:384–396

    Article  Google Scholar 

  • Turner BL II, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104:20666–20671

    Article  CAS  Google Scholar 

  • Valdéz-Hernández M, Sánchez-Sánchez O, Islebe G (2008) Recovery and succession in a dry tropical forest of southeastern México (unpublished manuscript)

  • Vester HFM (1997) The trees and the forest. The role of tree architecture in canopy development; a case study in secondary forests (Araracuara, Colombia). Academisch Proefschrift, The Netherlands

    Google Scholar 

  • Vester HFM, Lawrence D, Eastman JR, Turner BL II, Calmé S, Dickson R, Pozo C, Sangermano F (2007) Land change in the southern Yucatán and Calakmul biosphere reserve: implications for habitat and biodiversity. Ecol Appl 17:989–1003

    Article  Google Scholar 

  • Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forest for restoration. Restor Ecol 14:11–20

    Article  Google Scholar 

  • Weterings MJA, Weterings-Schonck SM, Vester HFM, Calmé S (2008) Senescence of Manilkara zapota trees and implications for large frugivorous birds in the Southern Yucatan Peninsula, Mexico. For Ecol Manag 256:1604–1611

    Article  Google Scholar 

  • Whitmore TC (1975) Tropical rain forests of the Far East. Oxford Clarenton Press, London

    Google Scholar 

  • Wilken GC (1987) Good farmers: traditional agricultural resource management in México and Central America. University of California Press, Berkeley

    Google Scholar 

  • Wittemyer G, Elsen P, Bean WT, Burton ACO, Brashares JS (2008) Accelerated human population growth at protected area edges. Science 321:123–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank B. L. Turner II, Deborah Lawrence, Hans Vester, Rebecca Dickson and Mirna Canul Montañez for their comments on previous drafts. Special thanks go to Dalia Hoil Villalobos who assisted me with species counts in secondary forest and to the kind farmers in the SY who put up with long hours of interviewing. I also thank two anonymous reviews who provide excellent direction in the development of this paper. Core funding for the Southern Yucatán Peninsular Region project from 1997 to 2009 was provided by NASA’s LCLUC program (NAG 56046, 511134, 06GD98G) and NSF’s BCS program (0410016). An additional sponsor of the research reported in this paper was the Mexican National Commission for the Knowledge and Use of Biodiversity, CONABIO (BJ002). The project is indebted to assistance provided by our host institution in Mexico, El Colegio de la Frontera Sur, especially Unidad Chetumal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Schmook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmook, B. Shifting maize cultivation and secondary vegetation in the Southern Yucatán: successional forest impacts of temporal intensification. Reg Environ Change 10, 233–246 (2010). https://doi.org/10.1007/s10113-010-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-010-0128-2

Keywords

Navigation