Skip to main content
Log in

Allocation using a heterogeneous space Voronoi diagram

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Spatial allocation is a fundamentally important process reflecting customer behavior, efficient service assignment, districting, etc., and is at the heart of many spatial analytical methods and processes. The Voronoi diagram has proven to be an important mathematical and geometric construct and has been widely applied in various fields because it is intuitive and efficient in the allocation and/or partitioning of space. However, existing Voronoi diagram approaches rely on the assumption that the attribute(s) of continuous space (non-generator points) is homogenous, which often is not the case for many application contexts. This paper introduces the concept of spatial heterogeneity in allocation. A new Voronoi diagram is defined—the heterogeneous Voronoi diagram. A geographic information system-based method is developed to derive the heterogeneous Voronoi diagram using discretized spatial allocation properties. Application of the heterogeneous Voronoi diagram is reported for a planning problem involving emergency drone delivery. Results show that response potential is over- and underestimated when heterogeneity and travel obstacles are disregarded. Further, feasibility, usefulness, and significance are demonstrated for incorporating geographic heterogeneity in the allocation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anselin L (1988) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr Anal 20(1):1–17

    Article  Google Scholar 

  • Anselin L (2013) Spatial econometrics: methods and models, vol 4. Springer, Berlin

    Google Scholar 

  • Bakolas E, Tsiotras P (2010) The Zermelo–Voronoi diagram: a dynamic partition problem. Automatica 46(12):2059–2067

    Article  Google Scholar 

  • Bogue DJ (1949) The structure of the metropolitan community: a study of dominance and subdominance. Horace M. Rackham School of Graduate Studies, University of Michigan, Ann Arbor

    Google Scholar 

  • Boots BN (1974) Delaunay triangles: an alternative approach to point pattern analysis. Process Assoc Am Geogr 6:26–29

    Google Scholar 

  • Boots BN (1980) Weighting thiessen polygons. Econ Geogr 56(3):248–259

    Article  Google Scholar 

  • Boots B, South R (1997) Modeling retail trade areas using higher-order, multiplicatively weighted Voronoi diagrams. J Retail 73(4):519–536

    Article  Google Scholar 

  • Cachon GP (2014) Retail store density and the cost of greenhouse gas emissions. Manag Sci 60(8):1907–1925

    Article  Google Scholar 

  • Caffrey SL, Willoughby PJ, Pepe PE, Becker LB (2002) Public use of automated external defibrillators. N Engl J Med 347(16):1242–1247

    Article  Google Scholar 

  • Chen J (1999) A raster-based method for computing Voronoi diagrams of spatial objects using dynamic distance transformation. Int J Geogr Inf Sci 13(3):209–225

    Article  Google Scholar 

  • Church RL, Cohon JL (1976) Multiobjective location analysis of regional energy facility siting problems (No. BNL-50567). Brookhaven National Lab., Upton, NY (USA)

  • Church RL, Murray AT (2009) Business site selection, location analysis, and GIS. Wiley, Hoboken

    Google Scholar 

  • Clarke K (2011) Getting started with geographic information systems, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Clarke R (2014) Understanding the drone epidemic. Comput Law Secur Rev 30(3):230–246

    Article  Google Scholar 

  • Communication W (2014) TU Delf’s ambulance drone drastically increases changes of survival of cardiac arrest patients. The Netherlands: Delft

  • Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley, Hoboken

    Google Scholar 

  • Cummins R, Bergner L, Eisenberg M, Murray J (1984) Sensitivity, accuracy, and safety of an automatic external defibrillator: report of a field evaluation. Lancet 324(8398):318–320

    Article  Google Scholar 

  • Dacey MF (1965) The geometry of central place theory. Geografiska Ann Ser B Human Geogr 47(2):111–124

    Article  Google Scholar 

  • Dahl KP, Thompson DR, McLaren D, Chao Y, Chien S (2011) Current-sensitive path planning for an underactuated free-floating ocean sensorweb. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3140–3146. IEEE

  • Dao THD, Zhou Y, Thill JC, Delmelle E (2012) Spatio-temporal location modeling in a 3D indoor environment: the case of AEDs as emergency medical devices. Int J Geogr Inf Sci 26(3):469–494

    Article  Google Scholar 

  • FAA (n.d.). https://www.faa.gov/uas/where_to_fly/airspace_restrictions/)

  • Finn RL, Wright D (2012) Unmanned aircraft systems: surveillance, ethics and privacy in civil applications. Comput Law Secur Rev 28(2):184–194

    Article  Google Scholar 

  • Gerrard RA, Church RL (1996) Closest assignment constraints and location models: properties and structure. Locat Sci 4(4):251–270

    Article  Google Scholar 

  • Gold CM (1992) The meaning of “Neighbour”. In: Frank AE, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space. Springer, Berlin, Heidelberg, pp 220–235

    Chapter  Google Scholar 

  • Gold CM, Condal AR (1995) A spatial data structure integrating GIS and simulation in a marine environment. Mar Geodesy 18(3):213–228

    Article  Google Scholar 

  • Goodchild MF (1992) Geographical data modeling. Comput Geosci 18(4):401–408

    Article  Google Scholar 

  • Goodchild MF, Gopal S (eds) (1989) The accuracy of spatial databases. CRC Press, Baca Raton

    Google Scholar 

  • Hakimi SL (1964) Optimum locations of switching centers and the absolute centers and medians of a graph. Oper Res 12(3):450–459

    Article  Google Scholar 

  • Hakimi SL (1965) Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13(3):462–475

    Article  Google Scholar 

  • Hanjoul P, Peeters D (1987) A facility location problem with clients’ preference orderings. Reg Sci Urban Econ 17(3):451–473

    Article  Google Scholar 

  • Hern A (2014) DHL launches first commercial drone ‘parcelcopter’ delivery service. The Guardian

  • Heuvelink GB (1998) Error propagation in environmental modelling with GIS. CRC Press, Baca Raton

    Google Scholar 

  • Huff DL, Lutz JM (1979) Ireland’s urban system. Econ Geogr 55(3):196–212

    Article  Google Scholar 

  • Li Z, Zhu C, Gold C (2004) Digital terrain modeling: principles and methodology. CRC Press, Baca Raton

    Book  Google Scholar 

  • Lugo JJ, Zell A (2014) Framework for autonomous on-board navigation with the AR. Drone. J Intell Rob Syst 73(1–4):401–412

    Article  Google Scholar 

  • Meijering JL (1953) Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res Rep 8:270–290

    Google Scholar 

  • Mendes AB, Themido IH (2004) Multi-outlet retail site location assessment. Int Trans Oper Res 11(1):1–18

    Article  Google Scholar 

  • Mu L, Wang X (2006) Population landscape: a geometric approach to studying spatial patterns of the US urban hierarchy. Int J Geogr Inf Sci 20(6):649–667

    Article  Google Scholar 

  • Murray AT, Matisziw TC, Wei H, Tong D (2008) A geocomputational heuristic for coverage maximization in service facility siting. Trans GIS 12(6):757–773

    Article  Google Scholar 

  • Novaes AG, de Cursi JS, da Silva AC, Souza JC (2009) Solving continuous location–districting problems with Voronoi diagrams. Comput Oper Res 36(1):40–59

    Article  Google Scholar 

  • Okabe A, Suzuki A (1997) Locational optimization problems solved through Voronoi diagrams. Eur J Oper Res 98(3):445–456

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu SN (1992) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, New York, p 1992

    Google Scholar 

  • Okabe A, Satoh T, Furuta T, Suzuki A, Okano K (2008) Generalized network Voronoi diagrams: concepts, computational methods, and applications. Int J Geogr Inf Sci 22(9):965–994

    Article  Google Scholar 

  • Pickett ST, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science 269(5222):331–334

    Article  Google Scholar 

  • Pulver A, Wei R, Mann C (2016) Locating AED enabled medical drones to enhance cardiac arrest response times. Prehospital Emerg Care 20(3):378–389

    Article  Google Scholar 

  • ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2(1):30–42

    Article  Google Scholar 

  • Rojeski P, ReVelle C (1970) Central facilities location under an investment constraint. Geogr Anal 2(4):343–360

    Article  Google Scholar 

  • Scaparra MP, Church RL, Medrano FA (2014) Corridor location: the multi-gateway shortest path model. J Geogr Syst 16:287–309

    Article  Google Scholar 

  • Selecky M, Vana P, Rollo M, Meiser T (2013) Wind corrections in flight path planning. Int J Adv Rob Syst 10:248–257

    Article  Google Scholar 

  • Sharifzadeh M, Shahabi C (2008) Processing optimal sequenced route queries using voronoi diagrams. GeoInformatica 12(4):411–433

    Article  Google Scholar 

  • Shaver GR (2005) Spatial heterogeneity: past, present, and future. In: Ecosystem function in heterogeneous landscapes. Springer, New York, pp 443–449

  • Shieh YN (1985) KH Rau and the economic law of market areas. J Reg Sci 25(2):191–199

    Article  Google Scholar 

  • Singh S, Woo M, Raghavendra CS (1998) Power-aware routing in mobile ad hoc networks. In: Proceedings of the 4th annual ACM/IEEE international conference on mobile computing and networking. ACM, pp 181–190

  • Snyder D (1962) Hierarchy Spacing and Interconnections of Urban Places in Uruguay. Festschr CF Jones Northwest Univ Stud Geogr 6:29–46

    Google Scholar 

  • Thiels CA, Aho JM, Zietlow SP, Jenkins DH (2015) Use of unmanned aerial vehicles for medical product transport. Air Med J 34(2):104–108

    Article  Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1089

    Google Scholar 

  • Tong D, Murray AT (2009) Maximizing coverage of spatial demand for service. Papers Reg Sci 88(1):85–97

    Article  Google Scholar 

  • Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res 19(6):1363–1373

    Article  Google Scholar 

  • Wagner JL, Falkson LM (1975) The optimal nodal location of public facilities with price-sensitive demand. Geogr Anal 7(1):69–83

    Article  Google Scholar 

  • Wei H, Murray AT, Xiao N (2006) Solving the continuous space p-centre problem: planning application issues. IMA J Manag Math 17(4):413–425

    Article  Google Scholar 

  • Welch A (2015) A cost-benefit analysis of Amazon Prime air. University of Tennessee at Chattanooga, Chattanooga

    Google Scholar 

  • Wigner E, Seitz F (1933) On the constitution of metallic sodium. Phys Rev 43(10):804

    Article  Google Scholar 

  • Winston WL, Goldberg JB (2004) Operations research: applications and algorithms, vol 3. Thomson Brooks/Cole, Belmont

    Google Scholar 

  • Witt J, Dunbabin M (2008) Go with the flow: optimal AUV path planning in coastal environments. In: Australian conference on robotics and automation, vol 2008(2)

  • Yao J, Murray AT (2013) Continuous surface representation and approximation: spatial analytical implications. Int J Geogr Inf Sci 27(5):883–897

    Article  Google Scholar 

  • Yao J, Murray AT (2014) Serving regional demand in facility location. Papers Reg Sci 93(3):643–662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Murray, A.T. Allocation using a heterogeneous space Voronoi diagram. J Geogr Syst 20, 207–226 (2018). https://doi.org/10.1007/s10109-018-0274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-018-0274-5

Keywords

JEL Classification

Navigation