3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

  • Pablo Fernández
  • José Pablo Suárez
  • Agustín Trujillo
  • Conrado Domínguez
  • José Miguel Santana
Original Article

Abstract

Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as “The Internet of Things” solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

Keywords

GIS Seaport Smart port FIWARE G3M 3D visualization Big Data Georeferenced data 

JEL Classification

O14 (Industrialization, Manufacturing and Service Industries, Choice of Technology) O33 (Technological Change: Choices and Consequences, Diffusion Processes) Y10 (Data: Tables and Charts) 

Notes

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) project RTC-2014-2258-8 and by the European Commission FP7 project “FI-WARE: Future Internet Core Platform” FP7-2011-ICT-FI 285248. We would like to thank the port authority general director, Salvador Capella, for supporting the access to the data of Las Palmas seaport. The fifth author wants to thank Agencia Canaria de Investigación, Innovación y Sociedad de la Información, for the grant “Formación del Personal Investigador-2012 of Gobierno de Canarias”.

References

  1. Aanderaa (2016) Aanderaa web page. http://www.aanderaa.com. Accessed 5 Aug 2016
  2. AJAX (2016) Ajax web page. https://api.jquery.com/category/ajax/. Accessed 5 Aug 2016
  3. Boroushaki S, Malczewski J (2010) ParticipatoryGIS: a web-based collaborative GIS and multicriteria decision analysis. Urisa J 22(1):23Google Scholar
  4. Cheng KT, Wang YC (2011) Using mobile gpu for general-purpose computing—a case study of face recognition on smartphones. In: 2011 international symposium on VLSI design, automation and test (VLSI-DAT). IEEE, pp 1–4Google Scholar
  5. Claramunt C, Devogele T, Fournier S, Noyon V, Petit M, Ray C (2007) Maritime GIS: from monitoring to simulation systems. In: Information fusion and geographic information systems. Springer, pp 34–44Google Scholar
  6. Cosmos (2016) Cosmos web page. http://catalogue.fiware.org/enablers/bigdata-analysis-cosmos. Accessed 5 Aug 2016
  7. Costello RL et al (2002) Rest (representational state transfer). Last updated Jun 26Google Scholar
  8. Cygnus (2016) Cygnus web page. https://github.com/telefonicaid/fiware-cygnus. Accessed 5 Aug 2016
  9. Dragićević S, Balram S (2004) A web GIS collaborative framework to structure and manage distributed planning processes. J Geogr Syst 6(2):133–153CrossRefGoogle Scholar
  10. FIWARE (2016) Puerto de la luz web page. http://www.fiware.org. Accessed 5 Aug 2016
  11. Flume (2016) Flume web page. http://www.http://hadoop.apache.org. Accessed 5 Aug 2016
  12. G3M (2016) G3M web page. http://glob3mobile.com. Accessed 5 Aug 2016
  13. Georgas N, Blumberg A (2010) Establishing confidence in marine forecast systems: the design and skill assessment of the New York Harbor observation and prediction system, version 3 (NYHOPS v3). In: 11th international conference in estuarine and coastal modeling (ECM11). Spalding, ML, Ph.D., PE, American Society of Civil Engineers, Washington, pp 660–685Google Scholar
  14. Glob3Mobile (2016) G3M documentation web page. https://github.com/glob3mobile/g3m. Accessed 5 Aug 2016
  15. GWT (2016) GWT web page. http://www.gwtproject.org. Accessed 5 Aug 2016
  16. Hadoop (2016) Hadoop web page. http://www.http://hadoop.apache.org. Accessed 5 Aug 2016
  17. HDFS (2016) HDFS web page. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. Accessed 5 Aug 2016
  18. HighSoft (2016) HighSoft web page. http://www.highcharts.com/about. Accessed 5 Aug 2016
  19. Hive (2016) Hive web page. https://hive.apache.org. Accessed 5 Aug 2016
  20. HTTP (2016) HTTP web page. http://www.w3.org/Protocols/. Accessed 5 Aug 2016
  21. JSON (2016) JSON web page. http://www.json.org. Accessed 5 Aug 2016
  22. Kaminski L, Kulawiak M, Cizmowski W, Chybicki A, Stepnowski A, Orlowski A (2009) Web-based GIS dedicated for marine environment surveillance and monitoring. In: OCEANS 2009-EUROPE. IEEE, pp 1–7Google Scholar
  23. Kraak MJ (2004) The role of the map in a web-GIS environment. J Geogr Syst 6(2):83–93CrossRefGoogle Scholar
  24. Lidar (2016) Lidar wikipedia web page. https://en.wikipedia.org/wiki/Lidar. Accessed 5 Aug 2016
  25. Luebke DP, Reddy M, Cohen JD, Varshney A, Watson B, Huebner R (2003) Level of detail for 3D graphics. Morgan Kaufmann, Boston, MAGoogle Scholar
  26. Marz N, Warren J (2015) Big Data: principles and best practices of scalable realtime data systems. Manning Publication, New YorkGoogle Scholar
  27. McCann M (2004) Using geovrml for 3D oceanographic data visualizations. In: Proceedings of the ninth international conference on 3D Web technology. ACM, pp 15–21Google Scholar
  28. Ming-Hsiang T (2004) Integrating web-based GIS and image processing tools for environmental monitoring and natural resource management. J Geogr Syst 6(2):155–174Google Scholar
  29. MongoDB (2016) MongoDB web page. https://www.mongodb.com. Accessed 5 Aug 2016
  30. Pedriza A, Citores M, de la Calle M, Gómez-Deck D, Trujillo A, Santana JM, Perdomo K, Suárez JP (2012) Glob3 mobile: Sistemas de información geográficos 3d en entornos de movilidad. In: III Jornadas Ibéricas de Infraestructura de Datos Espaciales, Madrid, SpainGoogle Scholar
  31. Pig (2016) Pig web page. https://pig.apache.org. Accessed 5 Aug 2016
  32. Python (2016) Python web page. https://www.python.org. Accessed 5 Aug 2016
  33. RDBMS (2016) Relational database manager system wikipedia web page. https://en.wikipedia.org/wiki/Relational_database_management_system. Accessed 5 Aug 2016
  34. Santana JM, Trujillo A, Suárez JP (2018) A physical model for screen space distribution of 3D marks on geographical information systems. Math Comput Simul 147:264–278.  https://doi.org/10.1016/j.matcom.2017.06.003 CrossRefGoogle Scholar
  35. StockCharts (2016) StockCharts web page. http://stockcharts.com. Accessed 5 Aug 2016
  36. Suárez JP, Trujillo A, Domınguez C, Santana JM, Fernández P (2015) Managing and 3D visualization of real-time big geo-referenced data from Las Palmas port through a flexible open source computer architecture. In: 1st international conference on geographical information systems theory, applications and management. Scitepress, BarcelonaGoogle Scholar
  37. Sung AhK, Dongyoun S, Yoon C, Thomas S, Steffen PW (2012) Integrated energy monitoring and visualization system for smart green city development: designing a spatial information integrated energy monitoring model in the context of massive data management on a web based platform. Autom Constr 22:51–59CrossRefGoogle Scholar
  38. Talukder A, Panangadan A (2009) Online visualization of adaptive distributed sensor webs. In: Aerospace conference, 2009 IEEE. IEEE, pp 1–8Google Scholar
  39. Trujillo A, Gómez-Deck D, de la Calle M, Suárez JP, Pedriza A, Santana JM (2013) Glob3 mobile: an open source framework for designing virtual globes on ios and android mobile devices. In: Progress and new trends in 3D geoinformation sciences. Springer, pp 211–229Google Scholar
  40. Trujillo A, Suárez JP, Santana JM, de la Calle M, Gómez-Deck D (2014) An efficient architecture for automatic shaders management on virtual globes. In: 2014 fifth international conference on computing for geospatial research and application (COM. Geo). IEEE, pp 38–42Google Scholar
  41. Villaseñor E, Estrada H (2014) Informetric mapping of big data in fi-ware. In: Proceedings of the 15th annual international conference on digital government research. ACM, pp 348–349Google Scholar
  42. WMS (2016) WMS specification web page. http://www.opengeospatial.org/standards/wms. Accessed 5 Aug 2016
  43. Wolff D (2011) OpenGL 4.0 shading language cookbook. Packt Publishing Ltd., BirminghamGoogle Scholar
  44. Wright NR, Yoon J (2007) Application of GIS technologies in port facilities and operations management. ASCE Publications, RestonGoogle Scholar
  45. Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D (2012) Visual analytics for the big data era—a comparative review of state-of-the-art commercial systems. In: 2012 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 173–182Google Scholar
  46. Zhong-Ren P, Chuanrong Z (2004) The roles of geography markup language (GML), scalable vector graphics (SVG), and web feature service (WFS) specifications in the development of internet geographic information systems (GIS). J Geogr Syst 6(2):95–116Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Mathematics, Graphics and Computation (MAGiC), IUMAUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Imaging Technology Center (CTIM)University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  3. 3.University of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations