Bãrcena MJ, Menãndez P, Palacios MB, Tusell F (2014) Alleviating the effect of collinearity in geographically weighted regression. J Geogr Syst 16(4):441–466. doi:10.1007/s10109-014-0199-6
Article
Google Scholar
Belsey DA, Kuh E, Welsch RE (1980) Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York
Book
Google Scholar
Bonferroni CE (1935) Il calcolo delle assicurazioni su gruppi di teste. In: Studi in Onore del Professor Salvatore Ortu Carboni, Rome, pp 13–60
Brown S, Versace VL, Laurenson L, Ierodiaconou D, Fawcett J, Salzman S (2011) Assessment of spatiotemporal varying relationships between rainfall, land cover and surface water area using geographically weighted regression. Environ Model Assess 17(3):241–254. doi:10.1007/s10666-011-9289-8. http://link.springer.com.ezproxy1.lib.asu.edu/article/10.1007/s10666-011-9289-8
Brunsdon C, Charlton M, Harris P (2012) Living with collinearity in local regression models. http://eprints.maynoothuniversity.ie/5755/
Byrne G, Charlton M, Fotheringham S (2009) Multiple dependent hypothesis tests in geographically weighted regression. In: Lees BG, Laffan SW (eds) Proceedings of the 10th international conference on geocomputation, University of New South Wales. http://eprints.maynoothuniversity.ie/5768/
Cahill M, Mulligan G (2007) Using geographically weighted regression to explore local crime patterns. Soc Sci Comput Rev 25(2):174–193. doi:10.1177/0894439307298925. http://ssc.sagepub.com.ezproxy1.lib.asu.edu/content/25/2/174
da Silva AR, Fotheringham AS (2015) The multiple testing issue in geographically weighted regression: the multiple testing issue in gwr. Geogr Anal. doi:10.1111/gean.12084
Google Scholar
Finley AO (2011) Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence: spatially-varying coefficients models. Methods Ecol Evol 2(2):143–154. doi:10.1111/j.2041-210X.2010.00060.x
Article
Google Scholar
Fotheringham AS (1982) Multicollinearity and parameter estimates in a linear model. Geogr Anal 14(1):64–71. doi:10.1111/j.1538-4632.1982.tb00055.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1982.tb00055.x/abstract
Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geogr Anal 31(4):340–358. doi:10.1111/j.1538-4632.1999.tb00989.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1999.tb00989.x/abstract
Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, New York
Google Scholar
Fotheringham AS, Crespo R, Yao J (2015) Geographical and temporal weighted regression (GTWR). Geogr Anal 47(4):431–452. doi:10.1111/gean.12071. http://onlinelibrary.wiley.com/doi/10.1111/gean.12071/abstract
Gilbert A, Chakraborty J (2011) Using geographically weighted regression for environmental justice analysis: cumulative cancer risks from air toxics in Florida. Soc Sci Res 40(1):273–286. doi:10.1016/j.ssresearch.2010.08.006. http://www.sciencedirect.com/science/article/pii/S0049089X10001754
Miller JA, Hanham RQ (2011) Spatial nonstationarity and the scale of species environment relationships in the Mojave Desert, California. USA. Int J Geogr Inf Sci 25(3):423–438. doi:10.1080/13658816.2010.518147
Article
Google Scholar
Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis, 5th edn. Wiley, New Jersey
Google Scholar
O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690. doi:10.1007/s11135-006-9018-6
Article
Google Scholar
Páez A, Farber S, Wheeler D (2011) A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environ Plan A 43(12):2992–3010. doi:10.1068/a44111. http://epn.sagepub.com/content/43/12/2992
Waller LA, Zhu L, Gotway CA, Gorman DM, Gruenewald PJ (2007) Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models. Stoch Environ Res Risk Assess 21(5):573–588. doi:10.1007/s00477-007-0139-9
Article
Google Scholar
Wheeler DC (2007) Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environ Plan A 39(10):2464–2481. doi:10.1068/a38325. http://epn.sagepub.com/content/39/10/2464
Wheeler DC (2009) Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environ Plan A 41(3):722–742. doi:10.1068/a40256. http://epn.sagepub.com/content/41/3/722
Wheeler DC (2010) Visualizing and diagnosing coefficients from geographically weighted regression models. In: Jiang B, Yao X (eds) Geospatial analysis and modelling of urban structure and dynamics, vol 99. Springer, Dordrecht, pp 415–436. http://link.springer.com/10.1007/978-90-481-8572-621
Wheeler DC, Calder CA (2007) An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J Geogr Syst 9(2):145–166. doi:10.1007/s10109-006-0040-y
Article
Google Scholar
Wheeler D, Tiefelsdorf M (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J Geogr Syst 7(2):161–187. doi:10.1007/s10109-005-0155-6
Article
Google Scholar
Wheeler DC, Waller LA (2009) Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. J Geogr Syst 11(1):1–22. doi:10.1007/s10109-008-0073-5. http://search.proquest.com.ezproxy1.lib.asu.edu/docview/230073360/abstract
Williams VSL, Jones LV, Tukey JW (1999) Controlling error in multiple comparisons, with examples from state-to-state differences in educational achievement. J Educ Behav Stat 24(1):42–69
Article
Google Scholar