Skip to main content

Advertisement

Log in

A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Spatio-temporal co-occurrence patterns represent subsets of object types which are located together in both space and time. Existing algorithms for co-occurrence pattern mining cannot handle complex applications such as air pollution in several ways. First, the existing models assume that spatial relationships between objects are explicitly represented in the input data, while the new method allows extracting implicitly contained spatial relationships algorithmically. Second, instead of extracting co-occurrence patterns of only point data, the proposed method deals with different feature types that is with point, line and polygon data. Thus, it becomes relevant for a wider range of real applications. Third, it also allows mining a spatio-temporal co-occurrence pattern simultaneously in space and time so that it illustrates the evolution of patterns over space and time. Furthermore, the proposed algorithm uses a Voronoi tessellation to improve efficiency. To evaluate the proposed method, it was applied on a real case study for air pollution where the objective is to find correspondences of air pollution with other parameters which affect this phenomenon. The results of evaluation confirm not only the capability of this method for co-occurrence pattern mining of complex applications, but also it exhibits an efficient computational performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceeding of the 20th International Conference on Very Large Data Bases (VLDB). pp 487–499

  • Akbari M, Samadzadegan F (2014) New regional co-location pattern mining method using fuzzy definition of neighborhood. Adv in Comput Sci: An Int J (ACSIJ) 3(3):32–37

    Google Scholar 

  • Azizi MH (2011) Impact of traffic-related air pollution on public health: a real challenge. Arch Iran Med 14(2):139–143

    Google Scholar 

  • Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, de Hoogh K et al (2013) Development of NO 2 and NO x land use regression models for estimating air pollution exposure in 36 study areas in Europe–the ESCAPE project. Atmos Env 72:10–23. doi:10.1016/j.atmosenv.2013.02.037

    Article  Google Scholar 

  • Celik M (2011) Discovering partial spatio-temporal co-occurrence patterns. In: Proceeding of the 1st international conference on spatial data mining and geographical knowledge services, Fuzhou, China, 116–120. doi:10.1109/ICSDM.2011.5969016

  • Celik M, Kang JM, Shekhar S (2007) Zonal co-location pattern discovery with dynamic parameters. In: Proceeding of the seventh IEEE international conference on data mining, Omaha, NE, 433–438. doi:10.1109/ICDM.2007.102

  • Celik M, Shekhar S, Rogers JP, Shine JA (2008) Mixed-drove spatiotemporal co-occurrence pattern mining. IEEE Trans Knowl Data Eng 20(10):1322–1335. doi:10.1109/TKDE.2008.97

    Article  Google Scholar 

  • Celik M, Azginoglu N, Terzi R (2012) Mining periodic spatio-temporal co-occurrence patterns: a summary of results. In: Proceeding of the international symposium on innovations in intelligent systems and applications (INISTA), Trabzon, Turkey, 411–415. doi:10.1109/INISTA.2012.6247044

  • Champendal A, Kanevski M, Huguenot PE (2014) Air pollution mapping using nonlinear land use regression models. In: Murgante B et al (eds) Computational science and its applications–ICCSA 2014. Part III, LNCS 8581, Springer, Switzerland, pp 682–690. doi:10.1007/978-3-319-09150-1_50

  • Desmier E, Flouvat F, Gay D, Selmaoui-Folcher N (2011) A clustering-based visualization of colocation patterns. In: Proceedings of the 15th Symposium on international database engineering & applications. 70–78. ACM. doi:10.1145/2076623.2076633

  • Ding W, Jiamthapthaksinl R, Parmar R, Jiang D, Stepinski TF, Eick CF (2008) Towards region discovery in spatial datasets. In: Proceeding of the Pacific-Asia conference on knowledge discovery and data mining (PAKDD). Osaka, Japan 88–99. doi:10.1007/978-3-540-68125-0_10

  • Goodchild MF (2003) The fundamental laws of GIScience. invited talk at university consortium for geographic information science. University of California, Santa Barbara

    Google Scholar 

  • Gudmundsson J, Kreveld MV (2006) Computing longest duration flocks in trajectory data. In: Proceeding of the ACM international symposium on geographic information systems. Virginia, USA. 35–42. doi:10.1145/1183471.1183479

  • Huang Y, Shekhar S, Xiong H (2004) Discovering co-location patterns from spatial datasets: a general approach. IEEE Trans Knowl Data Eng 16(12):1472–1485

    Article  Google Scholar 

  • Huang Y, Zhang L, Zhang P (2008) A framework for mining sequential patterns from spatio-temporal event datasets. IEEE Trans Knowl Data Eng 20(4):433–448. doi:10.1109/TKDE.2007.190712

    Article  Google Scholar 

  • Icking C, Klein R, Kollner P, Ma L (2003) Java applets for the dynamic visualization of voronoi diagrams. comput. sci. in perspect. Lect Notes Comput Sci 2598:191–205. doi:10.1007/3-540-36477-3_14

    Article  Google Scholar 

  • Kanaroglou PS, Adams MD, De Luca PF, Corr D, Sohel N (2013) Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model. Atmos Env 79:421–427. doi:10.1016/j.atmosenv.2013.07.014

    Article  Google Scholar 

  • Kavousi A, Sefidkar R, Alavimajd H, Rashidi Y, Khonbi ZA (2013) Spatial analysis of CO and PM10 pollutants in Tehran city. J Paramed Sci (JPS) 4(3):41–50 (ISSN: 2008-4978)

    Google Scholar 

  • Manikandan G, Srinivasan S (2012a) Mining of spatial co-location pattern implementation by FP growth. Indian J Comput Sci Eng (IJCSE) 3(2):344–348 (ISSN: 0976-5166)

    Google Scholar 

  • Manikandan G, Srinivasan S (2012b) Mining spatially co-located objects from vehicle moving data. Eur J Sci Res 68(3):352–366 (ISSN: 1450-216X)

    Google Scholar 

  • Miller HJ, Han J (2009) Geographic data mining and knowledge discovery, 2nd edn. CRC Press, published, London, p 486

    Google Scholar 

  • Mohan P, Shekhar S, Shine JA, Rogers JP (2010) Cascading spatiotemporal pattern discovery: a summary of results. In: Proceeding of the SIAM international conference on data mining (SDM): pp 327–338

  • Priya G, Jaisankar N, Venkatesan M (2011) Mining co-location patterns from spatial data using rulebased approach. Int J Glob Res Comput Sci 2(7):58–61

    Google Scholar 

  • Qian F, He Q, He J (2009a) Mining spread patterns of spatio-temporal co-occurrences over zones. In: Proceedings of the international conference on computational science and applications. 686–701. doi:10.1007/978-3-642-02457-3_57

  • Qian F, Yin L, He Q, He J (2009b) Mining spatio-temporal co-location patterns with weighted sliding window. In: Proceedings of the IEEE international conference on intelligent computing and intelligent systems ICIS 2009.181–185. doi:10.1109/ICICISYS.2009.5358192

  • Rahimi Ghoroghi N (2012) Evaluation of geographical factors on Tehran air pollution and its relation with temperature inversion. In: Proceedings of the first conference of air and noise pollution management. Tehran, Iran. http://www.civilica.com/Paper-CANPM01-CANPM01_039.html. (In Persian)

  • Saadatabadi AR, Mohammadian L, Vazifeh A (2012) Controls on air pollution over a semi-enclosed basin, Tehran: a synoptic climatological approach Iran. J Sci & Technol (IJST) 4:501–510

    Google Scholar 

  • Safavi SY, Alijani B (2006) Evaluation of geographical parameters in Tehran air pollution. Geogr Res J 58:99–112 (In Persian)

    Google Scholar 

  • Shad R, Mesgari MS, Shad A (2009) Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput, Environ Urban Syst 33(6):472–481

    Article  Google Scholar 

  • Shekhar S, Huang Y, Xiong H (2001) Discovering spatial co-location patterns: a summary of results. In: Proceeding of the 7th international symposium on spatial and temporal databases (SSTD). Redondo Beach, CA, USA. doi:10.1007/3-540-47724-1_13

  • Wan Y, Zhou J (2008) KNFCOM-T: a k-nearest features-based co-location pattern mining algorithm for large spatial data sets by using T-trees. Int J Bus Intell Data Min 3(4):375–389. doi:10.150/IJBIDM.2008.022735

    Article  Google Scholar 

  • Xiao X, Xie X, Luo Q, Ma W (2008) Density based co-location pattern discovery. In: Proceeding of the ACM SIGSPATIAL international conference on advances in geographic information systems (ACM-GIS). Irvine, CA, USA. doi:10.1145/1463434.1463471

  • Xiong H, Shekhar S, Huang Y, Kumar V, Ma X, Yoo JS (2004) A framework for discovering co-location patterns in data sets with extended spatial objects. In: Proceeding of the 2004 SIAM international conference on data mining (SDM’04). Lake Buena Vista, FL.78–89

  • Yoo JS, Bow M (2011) Mining top-k closed co-location patterns. In: Proceeding of the IEEE international conference on spatial data mining and geographical knowledge services (ICSDM). Fuzhou 100–105. doi:10.1109/ICSDM.2011.5969013

  • Yoo JS, Shekhar S (2005) A partial join approach for mining co-location patterns. In: Proceeding of the ACM SIGSPATIAL international conference on advances in geographic information systems (ACM-GIS). 241–249. doi:10.1145/1032222.1032258

  • Yoo JS, Shekhar S (2006) A join-less approach for mining spatial co-location patterns. IEEE Trans Knowl Data Eng 18(10):1323–1337. doi:10.1109/ICDM.2005.8

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful of the Iran Meteorological Organization, the Tehran Air Quality Control Center, the Tehran Traffic Control Center and the National Cartographic Center of Iran for providing our case study data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M., Samadzadegan, F. & Weibel, R. A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution. J Geogr Syst 17, 249–274 (2015). https://doi.org/10.1007/s10109-015-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-015-0216-4

Keywords

JEL Classification

Navigation