Journal of Geographical Systems

, Volume 16, Issue 2, pp 183–209

Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity

  • Elizabeth A. Mack
  • Yifan Zhang
  • Sergio Rey
  • Ross Maciejewski
Original Article

Abstract

The industrial composition of places has received considerable attention because of the widespread belief that industrial diversity buffers regional economies from economic shocks. Subsequently, a variety of toolkits and indices have been developed with the goal of better capturing the compositional dynamics of regions. Although useful, a key drawback of these indices is their static nature, which limits the utility of these indices in a space–time context. This paper provides an overview of and applications of an interface called interactive visualization tool for indices of industrial diversity, which is a visual analytics tool developed specifically for the analysis and visualization of local measures of industrial composition for areal data. This overview will include a discussion of its key features, as well as a demonstration of the utility of the interface in exploring questions surrounding diversity and the dynamic nature of composition through space and time. A focus of this demonstration is to highlight how the interactivity and query functionality of this interface overcome several of the obstacles to understanding composition through space and time that prior toolkits and comparative static approaches have been unable to address.

Keywords

Space–time Visual analytics Industrial composition Indices of industrial diversity 

JEL Classification

C8 O10 R10 

References

  1. Alwang J, Siegel PB (1994) Portfolio models and planning for export diversification: Malawi, Tanzania, and Zimbabwe. J Dev Stud 30(2):405–422CrossRefGoogle Scholar
  2. Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27(2):93–115CrossRefGoogle Scholar
  3. Anselin L (2003a) An introduction to spatial regression analysis in R. University of Illinois, Urbana-ChampaignGoogle Scholar
  4. Anselin L (2003b) An introduction to EDA with GeoDa. Spatial Analysis Laboratory, Department of Agricultural and Consumer Economics, UIUCGoogle Scholar
  5. Anselin L (2012) Space-time mapping. Spatial Autocorrelation, ChicagoGoogle Scholar
  6. Anselin L, Bao S (1997) Exploratory spatial data analysis linking SpaceStat and ArcView. Recent developments in spatial analysis—spatial statistics, behavioural modelling and computational intelligence pp 35–59Google Scholar
  7. Anselin L, Dodson R, Hudak S (1993) Linking GIS and spatial data analysis in practice. Geogr Syst 1:3–23Google Scholar
  8. Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22CrossRefGoogle Scholar
  9. Attaran M, Zwick M (1987) Entropy and other measures of industrial diversification. Q J Bus Econ 26(4):17–34Google Scholar
  10. Bernat GA Jr, Repice ES (2000) Industrial composition of state earnings in 1958–1998. Surv Curr Bus 80(2):70Google Scholar
  11. Bivand R (2002) Spatial econometrics functions in R: classes and methods. J Geogr Syst 4:405–421. doi:10.1007/s101090300096 CrossRefGoogle Scholar
  12. Bivand R, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317CrossRefGoogle Scholar
  13. Block R, Block C (1995) Space, place and crime: hot spot areas and hot places of liquor-related crime. Crime Place 4(2):145–184Google Scholar
  14. Bode E, Rey SJ (2006) The spatial dimension of economic growth and convergence. J Reg Sci 85(2):171–176CrossRefGoogle Scholar
  15. Brewer CA (2005) Designing better maps: a guide for GIS users. ESRI Press, CaliforniaGoogle Scholar
  16. Conroy M (1975) The concept and measurement of regional industrial diversification. South Econ J pp 492–505Google Scholar
  17. Dissart J (2003) Regional economic diversity and regional economic stability: research results and agenda. Int Reg Sci Rev 26:423–446CrossRefGoogle Scholar
  18. Drucker J (2011) Regional industrial structure concentration in the United States: trends and implications. Econ Geogr 87(4):421–452CrossRefGoogle Scholar
  19. Drucker J, Feser E (2012) Regional industrial structure and agglomeration economies: an analysis of productivity in three manufacturing industries. Reg Sci Urban Econ 42(1-2):1–14CrossRefGoogle Scholar
  20. Duque J, Dev B, Betancourt A, Franco J (2011) ClusterPy: library of spatially constrained clustering algorithms. Version 0.9.9. RiSE-group (Research in Spatial Economics). EAFIT University.Google Scholar
  21. Duranton G, Overman H (2008) Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. J Reg Sci 48(1):213–243CrossRefGoogle Scholar
  22. Dykes J (1995) Pushing maps past their established limits: a unified approach to cartographic visualization. Innov GIS 3:177–87Google Scholar
  23. Dykes J (1998) Cartographic visualization: exploratory spatial data analysis with local indicators of spatial association using TcI/Tk and cdv. J Roy Stat Soc Ser D (The Statistician) 47(3):485–497CrossRefGoogle Scholar
  24. Ellison G, Glaeser EL (1997) Geographic concentration in U.S. manufacturing industries: a Dartboard approach. J Polit Econ 105(5):889–927Google Scholar
  25. Ellison G, Glaeser EL, Kerr W (2010) What causes industry agglomeration? Evidence from co-agglomeration patterns. Am Econ Rev 100:1195–1213CrossRefGoogle Scholar
  26. Everett B (1974) Cluster analysis. Heinemann Educational Books Ltd, LondonGoogle Scholar
  27. Gahegan M, Takatsuka M, Wheeler M, Hardisty F (2000) Abstract GeoVISTA Studio: a geocomputational workbench. In: The Proceedings of the 5th international conference on GeoComputationGoogle Scholar
  28. Geary R (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–146Google Scholar
  29. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206CrossRefGoogle Scholar
  30. Gomez-Rubio V, Ferrandiz J, Lopez A (2003) Detecting clusters of diseases with R. J Geogr Syst 7:189–206CrossRefGoogle Scholar
  31. Guo D, Chen J, MacEachren AM, Liao K (2006) A visualization system for space-time and multivariate patterns (VIS-STAMP). IEEE Trans Vis Comput Graph 12(6):1461–1474CrossRefGoogle Scholar
  32. Hägerstrand T (1970) What about people in regional science?. Papers Reg Sci 24(1):6–21CrossRefGoogle Scholar
  33. Haining R, Wise S, Ma J (2000) Designing and implementing software for spatial statistical analysis in a GIS environment. J Geogr Syst 2:257–286CrossRefGoogle Scholar
  34. Harvey J (1991) Modelling accessibility using space-time prism concepts within geographical information systems. Int J Geogr Inf Syst 5(3):287–301Google Scholar
  35. Haslett J, Wills G, Unwin A (1990) SPIDER–interactive statistical tool for the analysis of spatially distributed data. Int J Geogr Inf Syst 4(3):285–296Google Scholar
  36. Isard W, Azis IJ, Drennan MP, Miller RE, Saltzman S, Thorbecke E (1998) Methods of interregional and regional analysis. Ashgate, AldershotGoogle Scholar
  37. Jackson RW (1984) An evaluation of alternative measures of regional industrial diversification. Reg Stud 18(2):103–112CrossRefGoogle Scholar
  38. Janikas MV, Rey SJ (2005) Spatial clustering, inequality and income convergence. Reg Dev 21:45–64Google Scholar
  39. Knox E, Bartlett M (1964) The detection of space-time interactions. J Roy Stat Soc Ser C (Appl Stat) 13(1):25–30Google Scholar
  40. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496CrossRefGoogle Scholar
  41. Kulldorff M, Rand K, Gherman G, Williams G, DeFrancesco D (1998) SaTScan v 2.1: software for the spatial and space-time scan statistics. National Cancer Institute, BethesdaGoogle Scholar
  42. Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F (2005) A space–time permutation scan statistic for disease outbreak detection. PLoS Med 2(3):e59CrossRefGoogle Scholar
  43. Kwan M (1998) Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr Anal 30(3):191–216CrossRefGoogle Scholar
  44. Kwan M (1999) Gender and individual access to urban opportunities: a study using space–time measures. Prof Geogr 51(2):211–227CrossRefGoogle Scholar
  45. LeSage J, Pace R (2004) Arc_mat, a toolbox for using arcview shape files for spatial econometrics and statistics. In: Egenhofer M, Freksa C, Miller H (eds) Geographic information science, lecture notes in computer science, vol 3234. Springer, Berlin pp 179–190. doi:10.1007/978-3-540-30231-5_12
  46. Levine N (1999) CrimeStat: a spatial statistics program for the analysis of crime incident locations. In: The IV international conference on GeoComputation, FredericksburgGoogle Scholar
  47. Levine N (2006) Crime mapping and the Crimestat program. Geogr Anal 38(1):41–56CrossRefGoogle Scholar
  48. Levine N (2010) CrimeStat: a spatial statistics program for the analysis of crime incident locations(V 3.3). National Institute of Justice, WashingtonGoogle Scholar
  49. Liu X, LeSage J (2010) Arc_mat: a matlab-based spatial data analysis toolbox. J Geogr Syst 12(1):69–87CrossRefGoogle Scholar
  50. López FA, Matilla-García M, Mur J, Marín MR (2011) Four tests of independence in spatiotemporal data. J Reg Sci 90(3):663–685CrossRefGoogle Scholar
  51. MacEachren A, Wachowicz M, Edsall R, Haug D, Masters R (1999) Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int J Geogr Inf Sci 13(4):311–334CrossRefGoogle Scholar
  52. Maciejewski R, Pattah A, Ko S, Hafen R, Cleveland WS, Ebert DS (2013) Automated box-cox transformations for improved visual encoding. IEEE Trans Vis Comput Graph 19(1):130–140CrossRefGoogle Scholar
  53. Mack E, Grubesic TH, Kessler E (2007a) Indices of industrial diversity and regional economic composition. Growth Change 38(3):474–509CrossRefGoogle Scholar
  54. Mack E, Grubesic TH, Kessler E (2007b) Indices of industrial diversity and regional economic composition. Growth Change 38:474–509CrossRefGoogle Scholar
  55. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220Google Scholar
  56. Marcon E, Puech F (2010) Measures of the geographic concentration of industries: improving distance-based methods. J Econ Geogr 10(5):745–762CrossRefGoogle Scholar
  57. Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New YorkGoogle Scholar
  58. McBratney A, Gruijter J (2006) A continuum approach to soil classification by modified fuzzy k-means with extragrades. J Soil Sci 43(1):159–175CrossRefGoogle Scholar
  59. McIntosh J, Yuan M (2005) A framework to enhance semantic flexibility for analysis of distributed phenomena. Int J Geogr Inf Sci 19(10):999–1018CrossRefGoogle Scholar
  60. Moran P (1948) The interpretation of statistical maps. J Roy Stat Soc Ser B (Methodol) 10(2):243–251Google Scholar
  61. Openshaw S (1994) Two exploratory space-time-attribute pattern analysers relevant to GIS. Spatial Anal GIS pp 83–104Google Scholar
  62. Peuquet D (1994) It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461CrossRefGoogle Scholar
  63. Peuquet D (2001) Making space for time: issues in space-time data representation. GeoInformatica 5(1):11–32CrossRefGoogle Scholar
  64. Peuquet D, Duan N (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24Google Scholar
  65. Rey S (1998) Technician needs assessment survey. Technical representative, San Diego Regional Economic Development CorporationGoogle Scholar
  66. Rey S (2000) Identifying regional industrial clusters in the california economy: volume I conceptual design. Technical representative California Employment Development Department, SacramentoGoogle Scholar
  67. Rey SJ, Janikas MV (2006) STARS: space–time analysis of regional systems. Geogr Anal 38(1):67–86CrossRefGoogle Scholar
  68. Robertson C, Nelson T, Boots B, Wulder M (2007) STAMP: spatial–temporal analysis of moving polygons. J Geogr Syst 9(3):207–227CrossRefGoogle Scholar
  69. Robinson AC (2011) Highlighting in geovisualization. Cartogr Geogr Inf Scis 38(4):373–383CrossRefGoogle Scholar
  70. Rundensteiner EA, Ward MO, Xie Z, Cui Q, Wad CV, Yang D, Huang S (2007) XmdvtoolQ: : quality-aware interactive data exploration. In: SIGMOD conference, pp 1109–1112Google Scholar
  71. Sadahiro Y, Umemura M (2001) A computational approach for the analysis of changes in polygon distributions. J Geogr Syst 3(2):137–154CrossRefGoogle Scholar
  72. Sharpe WF (1970) Portfolio theory and capital markets. McGraw-Hill, New YorkGoogle Scholar
  73. Siegel PB, Johnson TG, Alwang J (1993) Diversification of production agriculture across individual states: comment. J Prod Agric 6(3):445–446Google Scholar
  74. Siegel PB, Alwang J, Johnson TG (1995a) A structural decomposition of regional economic instability: a conceptual framework*. J Reg Sci 35(3):457–470CrossRefGoogle Scholar
  75. Siegel PB, Johnson TG, Alwang J (1995b) Regional economic diversity and diversification. Growth Change 26(2):261–284CrossRefGoogle Scholar
  76. Swayne DF, Cook D, Buja A (1991) Xgobi: interactive dynamic graphics. In: The X window system with a link To SGoogle Scholar
  77. Symanzik J, Majure J, Cook D (1996) Dynamic graphics in a GIS: a bidirectional link between ArcView 2.0 and XGobi. Comput Sci Stat 27:299–303Google Scholar
  78. Symanzik J, Kötter T, Schmelzer S, Klinke S, Cook D, Swayne DF (1997) Spatial data analysis in the dynamically linked ArcView/XGobi/XploRe environment. Comput Sci Stat 29:561–569Google Scholar
  79. Symanzik J, Cook D, Lewin-Koh N, Majure JJ, Megretskaia I (2000) Linking ArcViewTM and XGobi: insight behind the front end. J Comput Graph Stat 9(3):470–490Google Scholar
  80. Takasuka M, Gahegan M (2001) Sharing exploratory geospatial analysis and decision making using GeoVISTA studio: from a desktop to the web. J Geogr Inf Decis Anal 5:129–139Google Scholar
  81. Takatsuka M, Gahegan M (2002) GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization. Comput Geosci 28:1131–1144CrossRefGoogle Scholar
  82. Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, ReadingGoogle Scholar
  83. Unwin A, Wills G, Haslett J (1990) REGARD—graphical analysis of regional data. In: Proceedings of the section on statistical graphics, American Statistical Association, Alexandria, pp 36–41Google Scholar
  84. US Census Bureau (2012) ACS demographic and housing estimates 2007–2011. American Community Survey 5-year Estimates. http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_5YR_DP05&prodType=table
  85. US Department of Commerce (2012) County Business Patterns (CBP). http://www.census.gov/econ/cbp/
  86. Wagner J (2000) Regional economic diversity: action, concept, or state of confusion. J Reg Anal Policy 30:1–22Google Scholar
  87. Wagner JE, Deller S (1998) Measuring the effects of economic diversity on growth and stability. Land Econ 74(4):541–556CrossRefGoogle Scholar
  88. Ward MO (1994) XmdvTool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the conference on visualization ’94, IEEE Computer Society Press, Los Alamitos, pp 326–333Google Scholar
  89. Weaver C (2004) Building highly-coordinated visualizations in improvise. In: Proceedings of the IEEE symposium on information visualization, IEEE Computer Society, Washington, pp 159–166Google Scholar
  90. Weaver CE (2006) Improvise: a user interface for interactive construction of highly-coordinated visualizations. PhD thesis, University of Wisconsin at Madison, MadisonGoogle Scholar
  91. Wills G, Unwin AR, Haslett J (1991) Spatial interactive graphics applied to Irish socioeconomic data. In: Proceedings of the ASA statistical graphics section, American Statistical Association, Atlanta, pp 37–41Google Scholar
  92. Wise S, Haining R, Ma J (1997) Regionalization tools for exploratory spatial analysis of health data. Recent developments in spatial analysis: spatial statistics, behavioural modelling, and computational intelligence pp 83–100Google Scholar
  93. Wise S, Haining R, Ma J (2001) Providing spatial statistical data analysis functionality for the GIS user: the SAGE project. Int J Geogr Inf Sci 15(3):239–254CrossRefGoogle Scholar
  94. Wundt B, Martin L (1993) Minimizing employment instability: a model of industrial expansion with input-output considerations. Reg Sci Perspect 23(1):81–93Google Scholar
  95. Ye X, Carroll MC (2011) Exploratory space-time analysis of local economic development. Appl Geogr 31(3):1049–1058CrossRefGoogle Scholar
  96. Ye X, Rey S (2011) A framework for exploratory space-time analysis of economic data. Ann Reg Sci pp 1–25Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elizabeth A. Mack
    • 1
  • Yifan Zhang
    • 1
  • Sergio Rey
    • 1
  • Ross Maciejewski
    • 1
  1. 1.TempeUSA

Personalised recommendations