Advertisement

Journal of Geographical Systems

, Volume 15, Issue 3, pp 291–317 | Cite as

Constrained variants of the gravity model and spatial dependence: model specification and estimation issues

  • Daniel A. Griffith
  • Manfred M. Fischer
Original Article

Abstract

In this paper, we distinguish three constrained variants of the gravity model of spatial interaction: doubly constrained, production constrained and attraction constrained exponential gravity models. These model variants include origin- and/or destination-specific balancing factors that act as constraints to ensure that the estimated rows and columns of the flow data matrix sum to the observed row and column totals. Because flows are typically counts, the Poisson rather than the normal probability model specification furnishes the appropriate statistical distribution, and parameter estimation can be achieved via Poisson regression. This probability model specification motivates the use of origin and/or destination fixed effects or—under certain conditions—the use of origin- and/or destination-specific random effects for model estimation. The paper establishes theoretical connections between balancing factors, fixed effects represented by binary indicator variables and random effects. The results pertaining to both the doubly and singly constrained cases of spatial interaction are illustrated with an empirical example while accounting for spatial dependence between flows from locations neighbouring both the origins and destinations during estimation.

Keywords

Constrained gravity models Count data Patent citation flows Poisson Spatial dependence in origin–destination flows Spatial filtering Spatial econometrics 

JEL Classification

C13 C31 R15 

References

  1. Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman, HarlowGoogle Scholar
  2. Baxter M (1982) Similarities in methods of estimating spatial interaction models. Geogr Anal 14(3):267–272CrossRefGoogle Scholar
  3. Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis. MIT Press, CambridgeGoogle Scholar
  4. Black WR (1992) Network autocorrelation in transport network and flow systems. Geogr Anal 24(3):207–222CrossRefGoogle Scholar
  5. Bolduc D, Laferrière R, Santarossa G (1995) Spatial autoregressive error components in travel flow models: an application to aggregate mode choice. In: Anselin L, Florax R (eds) New directions in spatial econometrics. Springer, Berlin, pp 96–108CrossRefGoogle Scholar
  6. Cesario FJ (1973) A generalized trip distribution model. J Reg Sci 13(2):233–248CrossRefGoogle Scholar
  7. Cesario FJ (1977) A new interpretation of the “normalizing” or “balancing factors” of gravity type spatial models. J Soc Econ Plann Sci 11(3):131–136CrossRefGoogle Scholar
  8. Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344CrossRefGoogle Scholar
  9. Chun Y, Griffith DA (2011) Modeling network autocorrelation in space-time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536CrossRefGoogle Scholar
  10. Curry L (1972) A spatial analysis of gravity flows. Reg Stud 6(2):131–137CrossRefGoogle Scholar
  11. Davies RB, Guy CM (1987) The statistical modelling of flow data when the Poisson assumption is violated. Geogr Anal 19(4):300–314CrossRefGoogle Scholar
  12. Elhorst JP (2010) Spatial panel data models. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 377–407CrossRefGoogle Scholar
  13. Evans AW (1970) Some properties of trip distribution models. Transp Res 4(1):19–36CrossRefGoogle Scholar
  14. Fischer MM (2000) Travel demand—theory. In: Polak JB, Heertje A (eds) Analytical transport economics. Edward Elgar, Cheltenham, pp 51–78Google Scholar
  15. Fischer MM, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: a comparison of spatial econometric and spatial filtering specifications. J Reg Sci 48(5):969–989CrossRefGoogle Scholar
  16. Fischer MM, Wang J (2011) Spatial data analysis: models, methods and techniques [Springer Briefs in Regional Science]. Springer, BerlinGoogle Scholar
  17. Fischer MM, Scherngell T, Jansenberger E (2005) Patents, patent citations and the geography of knowledge spillovers in Europe. In: Markowski T (ed) Regional scientists’ tribute to Professor Ryszard Domanski. Polish Academy of Sciences, Committee for Space Economy and Regional Planning, Warsaw, pp 57–75Google Scholar
  18. Fischer MM, Scherngell T, Jansenberger E (2006) The geography of knowledge spillovers between high-technology firms in Europe: evidence from a spatial interaction modeling perspective. Geogr Anal 38(3):288–309CrossRefGoogle Scholar
  19. Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer, DordrechtGoogle Scholar
  20. Griffith DA (2000) A linear regression solution to the spatial autocorrelation problem. J Geogr Syst 2(2):141–156CrossRefGoogle Scholar
  21. Griffith DA (2003) Spatial autocorrelation and spatial filtering. Springer, BerlinCrossRefGoogle Scholar
  22. Griffith DA (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38Google Scholar
  23. Griffith DA (2009) Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows. J Geogr Syst 11(2):117–140CrossRefGoogle Scholar
  24. Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage, Bevery HillsGoogle Scholar
  25. Isard W (1960) Methods of regional analysis. MIT Press, CambridgeGoogle Scholar
  26. Kirby HR (1974) Theoretical requirements for calibrating gravity models. Transp Res 8(1):97–104Google Scholar
  27. Lambert DM, Brown JP, Florax RJGM (2010) A two-step estimator for a spatial lag model of counts: theory, small sample performance and an application. Reg Sci Urban Econ 40(4):241–252CrossRefGoogle Scholar
  28. Ledent J (1985) The doubly constrained model of spatial interaction: a more general formulation. Environ Plann A 17(2):253–262CrossRefGoogle Scholar
  29. LeSage JP, Fischer MM (2010) Spatial econometric methods for modeling origin-destination flows. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 409–433CrossRefGoogle Scholar
  30. LeSage JP, Pace RK (2008) Spatial econometric modeling of origin-destination flows. J Reg Sci 48(5):941–968CrossRefGoogle Scholar
  31. LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  32. LeSage JP, Fischer MM, Scherngell T (2007) Knowledge spillovers across Europe. Evidence from a Poisson spatial interaction model with spatial effects. Pap Reg Sci 86(3):393–421CrossRefGoogle Scholar
  33. McCullagh P, Nelder JA (1983) Generalized linear models. Chapman and Hall, LondonGoogle Scholar
  34. Niedercorn J, Bechdolt B (1969) An economic derivation of the “Gravity Law” of spatial interaction. J Reg Sci 9(2):273–282CrossRefGoogle Scholar
  35. Pace RK, LeSage JP, Zhu S (2011) Interpretation and computation of estimates from regression models using spatial filtering. Paper presented at the Fifth World Conference of the Spatial Econometrics Association, Toulouse, July 6–8Google Scholar
  36. Sen A, Smith T (1995) Gravity models of spatial interaction behavior. Springer, BerlinCrossRefGoogle Scholar
  37. Tiefelsdorf M (2003) Misspecification in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5(1):25–50CrossRefGoogle Scholar
  38. Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plann A 27(6):985–999CrossRefGoogle Scholar
  39. Tobler W (1983) An alternative formulation for spatial interaction modeling. Environ Plann A 15(5):693–703CrossRefGoogle Scholar
  40. Wilson AG (1967) A statistical theory of spatial distribution models. Transp Res 1(3):253–269CrossRefGoogle Scholar
  41. Wilson AG (1971) A family of spatial interaction models and associated developments. Environ Plann 3(1):1–32CrossRefGoogle Scholar
  42. Wilson AG, Kirkby MJ (1980) Mathematics for geographers and planners, 2nd edn. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations