Skip to main content
Log in

Testing spatial autocorrelation in weighted networks: the modes permutation test

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardized exchange matrix appearing in spectral clustering and generalize to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an accessibility matrix into an exchange matrix with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here the notations match the higher-order discrete time extensions of the exchange matrix, resulting (under weak regularity conditions) from the iteration of the Markov transition matrix as

    $$ E^{(r)}:=\Uppi W^r\quad E^{(0)}=\Uppi\quad E^{(2)}=E\Uppi^{-1}E \quad E^{(\infty)}=ff^{\prime} . $$

References

  • Aldous D, Fill J (2002) Reversible Markov chains and random walks on graphs. Draft chapters, online version available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Book  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geograph Anal 27:93–115

    Article  Google Scholar 

  • Arbia G (2006) Spatial econometrics: statistical foundations and applications to regional convergence. Springer, Berlin

    Google Scholar 

  • Assunção RM, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162

    Article  Google Scholar 

  • Barbu VS, Limnios N (2008) Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis. Springer, Berlin

    Google Scholar 

  • Bavaud F (1998) Models for spatial weights: a systematic look. Geograph Anal 30:153–171

    Article  Google Scholar 

  • Bavaud F (2002) The quasisymmetric side of gravity modelling. Environ Plan A 34:61–79

    Article  Google Scholar 

  • Bavaud F (2008) Local concentrations. Papers Reg Sci 87:357–370

    Article  Google Scholar 

  • Bavaud F (2008) The endogenous analysis of flows, with applications to migrations, social mobility and opinion shifts. J Math Sociol 32:239–266

    Article  Google Scholar 

  • Bavaud F (2010) Multiple soft clustering, spectral clustering and distances on weighted graphs. In: Proceedings of the ECML PKDD’10. Lecture notes in computer science, Springer, vol 6321, pp 103–118

  • Berger J, Snell JL (1957) On the concept of equal exchange. Behav Sci 2:111–118

    Article  Google Scholar 

  • Besag J, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. J R Stat Soc (Ser C Appl Stat) 26:327–333

    Google Scholar 

  • Bivand RS, Müller W, Reder M (2009) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872

    Article  Google Scholar 

  • Bivand R (2009) Applying Measures of spatial autocorrelation: computation and simulation. Geograph Anal 41:375–384

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10:317–344

    Article  Google Scholar 

  • Chung FRK (1997) Spectral graph theory. CBMS regional conference series in mathematics 92. American Mathematical Society, Washington

    Google Scholar 

  • Çinlar E (1975) Introduction to stochastic processes. Prentice Hall, New York

    Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

  • Corcoran CD, Mehta CR (2002) Exact level and power of permutation, bootstrap, and asymptotic tests of trend. J Mod Appl Stat Methods 1:42–51

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken, NJ

    Google Scholar 

  • Dray S (2011) A new perspective about Moran’s coefficient: spatial autocorrelation as a linear regression problem. Geograph Anal 43:127–141

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer, Dordrecht

    Google Scholar 

  • Geary R (1954) The contiguity ratio and statistical mapping. Incorporated Stat 5:115–145

    Article  Google Scholar 

  • Goodchild MF, Smith TR (1980) Intransitivity, the spatial interaction model, and US migration streams. Environ Plan A 12:1131–1144

    Article  Google Scholar 

  • Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl 321:95–112

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  Google Scholar 

  • Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Janssen A, Pauls T (2005) A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems. Comput Stat 20:369–383

    Article  Google Scholar 

  • Kijima M (1997) Markov processes for stochastic modeling. Chapman & Hall, London

    Google Scholar 

  • Lebart L (1969) Analyse statistique de la contiguïté. Publication de l’Institut de Statistiques de l’Université de Paris 18:81–112

    Google Scholar 

  • Leenders RTAJ (2002) Modeling social influence through network autocorrelation: constructing the weight matrix. Soc Netw 24:21–47

    Article  Google Scholar 

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall, London

    Book  Google Scholar 

  • Li F, Calder CA, Cressie N (2007) Beyond Moran’s I : testing for spatial dependence based on the spatial autoregressive model. Geograph Anal 39:357–375

    Google Scholar 

  • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Google Scholar 

  • Sen A, Smith T (1995) Gravity Models of spatial interaction behavior. Springer, Berlin

    Book  Google Scholar 

  • Thioulouse J, Chessel D, Champely S (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ Ecol Stat 2:1–14

    Article  Google Scholar 

  • Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39:1193–221

    Article  Google Scholar 

  • Upton G, Fingleton B (1985) Spatial data analysis by example. Wiley, Hoboken, NJ

    Google Scholar 

  • Waldhör T (1996) The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Stat Med 15:887–892

    Article  Google Scholar 

  • Willekens FJ (1983) Specification and calibration of spatial interaction models: a contingency-table perspective and an application to intra-urban migration in Rotterdam. Tijdschrift voor Economische en Sociale Geografie 74:239–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bavaud.

Appendix

Appendix

Proof of (7)

U being orthogonal, ∑ i f i c i α c i β  = ∑ i u i α u i β  = δ αβ and \(\sum_i f_i c_{i\alpha}=\sum_i \sqrt{f_i}u_{i\alpha} =\sum_i u_{i0}u_{i\alpha}=\delta_{\alpha0}\).

Proof of (9)

independence implies the functional form σ ij  = δ ij g(f i ) where g(f) expresses a possible size dependence. Consider the aggregation of regions j into super-region J, with aggregated field \(X_J=\sum\nolimits_{j\in J}f_j X_j/f_J\), where \(f_J:=\sum\nolimits_{j\in J}f_j\). By construction,

$$ g(f_J)=\hbox{Var}(X_J)=\frac{1}{f_J^2}\sum_{i,j\in J}f_if_j \sigma_{ij}= \frac{1}{f_J^2}\sum_{j\in J}f_j^2 g(f_j) $$

that is \(f_J^2 g(f_J)=\sum\nolimits_{j\in J}f_j^2 g(f_j)\), with unique solution g(f j ) = σ2/f j (and g(f J ) = σ2/f J ), where \(\sigma^2=\hbox{Var}(\bar{X})\).

Proof of (10)

\(\hat{\sigma}_{\alpha\beta}:=\hbox{Cov}(\hat{X}_\alpha,\hat{X}_\beta)= \sum\nolimits_{ij} f_i f_j c_{i\alpha}c_{j\beta}\hbox{Cov}(X_i,X_j) =\sigma^2 \sum\nolimits_i f_i c_{i\alpha}c_{i\beta}=\sigma^2\sum\nolimits_i u_{i\alpha}u_{i\beta}=\sigma^2\delta_{\alpha\beta}\).

Proof of (11)

\(\sum\nolimits_{\alpha\ge1}\hat{x}^2_\alpha= \sum\nolimits_{ij}\sqrt{f_if_j}x_ix_j\sum\nolimits_{\alpha\ge0}u_{i\alpha} u_{j\alpha}-\hat{x}^2_0=\sum\nolimits_i f_i x_i^2-\bar{x}^2=\hbox{var}(x)\). Also, \(\hbox{var}_{{\rm loc}}(x)=\frac{1}{2}\sum\nolimits_{ij}e_{ij}(x_i-x_j)^2=\sum\nolimits_i f_i x_i^2-\sum\nolimits_{ij}e_{ij}x_ix_j= \sum\nolimits_i f_i x_i^2-\bar{x}^2-\sum\nolimits_{\alpha\ge1}\lambda_\alpha\sum\nolimits_i c_{i\alpha} x_i \sum\nolimits_j c_{j\alpha} x_j= \hbox{var}(x)-\sum\nolimits_{\alpha\ge1}\lambda_\alpha\hat{x}^2_\alpha\).

Proof of (12) and (13)

define

$$ a_\alpha:=\frac{\hat{x}^2_\alpha}{\sum_{\beta\ge1} \hat{x}^2_\beta} \quad \hbox{with}\quad \sum_{\alpha\ge1}a_\alpha=1 \quad\hbox{and}\quad I(\hat{x})=\sum_{\alpha\ge1} \lambda_\alpha a_\alpha . $$

Under H 0, the distribution of the non-trivial modes is exchangeable, i.e. f(a) = f(π(a)). By symmetry, E π(a α ) = 1/(n − 1), E π(a 2 α ) = s(x)/(n − 1)2 where s(x) = ∑ β ≥ 1 a 2 β /(n − 1) and E π(a α a β ) = (1 − s(x)/(n − 1))/[(n − 1)(n − 2)] for α ≠ β. Further substitution proves the result.

Proof of the semi-negative definiteness of Q in (20)

for any vector h,

$$ 0\le \frac{1}{2}\sum_{ij}\varepsilon_{ij}(h_i-h_j)^2=\sum_i\sigma_i h_i^2-\sum_{ij}\epsilon_{ij}h_ih_j =- \sum_{ij}(\epsilon_{ij}-\delta_{ij}\sigma_j)h_ih_j . $$

Relation between the eigen-decompositions of E (s) (t) and Q in (20)

in matrix notation, \(Q=\Uppi^{\frac{1}{2}} R\Uppi^{-\frac{1}{2}}\), and hence, \(Q\sqrt{f}=0\) by (19), showing \(u_0=\sqrt{f}\) with μ 0 = 0. Consider another, non-trivial eigenvector u α of Q, with eigenvalue μ α , orthogonal to \(\sqrt{f}\) by construction. Identity \(E(t)=\Uppi \exp(t R)\) together with (5) yield

$$ E^s(t)=\sum_{k\ge0}\frac{t^k}{k!}Q^k-\sqrt{f}\sqrt{f}^{\prime} \quad E^s(t)u_\alpha=\sum_{k\ge0}\frac{t^k\mu_\alpha^k }{k!} u_\alpha=\exp(\mu_\alpha t)u_\alpha . $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavaud, F. Testing spatial autocorrelation in weighted networks: the modes permutation test. J Geogr Syst 15, 233–247 (2013). https://doi.org/10.1007/s10109-013-0179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-013-0179-2

Keywords

JEL Classification

Navigation