Abstract
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardized exchange matrix appearing in spectral clustering and generalize to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an accessibility matrix into an exchange matrix with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Similar content being viewed by others
Notes
Here the notations match the higher-order discrete time extensions of the exchange matrix, resulting (under weak regularity conditions) from the iteration of the Markov transition matrix as
$$ E^{(r)}:=\Uppi W^r\quad E^{(0)}=\Uppi\quad E^{(2)}=E\Uppi^{-1}E \quad E^{(\infty)}=ff^{\prime} . $$
References
Aldous D, Fill J (2002) Reversible Markov chains and random walks on graphs. Draft chapters, online version available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html
Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht
Anselin L (1995) Local indicators of spatial association—LISA. Geograph Anal 27:93–115
Arbia G (2006) Spatial econometrics: statistical foundations and applications to regional convergence. Springer, Berlin
Assunção RM, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162
Barbu VS, Limnios N (2008) Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis. Springer, Berlin
Bavaud F (1998) Models for spatial weights: a systematic look. Geograph Anal 30:153–171
Bavaud F (2002) The quasisymmetric side of gravity modelling. Environ Plan A 34:61–79
Bavaud F (2008) Local concentrations. Papers Reg Sci 87:357–370
Bavaud F (2008) The endogenous analysis of flows, with applications to migrations, social mobility and opinion shifts. J Math Sociol 32:239–266
Bavaud F (2010) Multiple soft clustering, spectral clustering and distances on weighted graphs. In: Proceedings of the ECML PKDD’10. Lecture notes in computer science, Springer, vol 6321, pp 103–118
Berger J, Snell JL (1957) On the concept of equal exchange. Behav Sci 2:111–118
Besag J, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. J R Stat Soc (Ser C Appl Stat) 26:327–333
Bivand RS, Müller W, Reder M (2009) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872
Bivand R (2009) Applying Measures of spatial autocorrelation: computation and simulation. Geograph Anal 41:375–384
Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10:317–344
Chung FRK (1997) Spectral graph theory. CBMS regional conference series in mathematics 92. American Mathematical Society, Washington
Çinlar E (1975) Introduction to stochastic processes. Prentice Hall, New York
Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London
Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London
Corcoran CD, Mehta CR (2002) Exact level and power of permutation, bootstrap, and asymptotic tests of trend. J Mod Appl Stat Methods 1:42–51
Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken, NJ
Dray S (2011) A new perspective about Moran’s coefficient: spatial autocorrelation as a linear regression problem. Geograph Anal 43:127–141
Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer, Dordrecht
Geary R (1954) The contiguity ratio and statistical mapping. Incorporated Stat 5:115–145
Goodchild MF, Smith TR (1980) Intransitivity, the spatial interaction model, and US migration streams. Environ Plan A 12:1131–1144
Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl 321:95–112
Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin
Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613
Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge
Janssen A, Pauls T (2005) A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems. Comput Stat 20:369–383
Kijima M (1997) Markov processes for stochastic modeling. Chapman & Hall, London
Lebart L (1969) Analyse statistique de la contiguïté. Publication de l’Institut de Statistiques de l’Université de Paris 18:81–112
Leenders RTAJ (2002) Modeling social influence through network autocorrelation: constructing the weight matrix. Soc Netw 24:21–47
LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall, London
Li F, Calder CA, Cressie N (2007) Beyond Moran’s I : testing for spatial dependence based on the spatial autoregressive model. Geograph Anal 39:357–375
von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416
Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23
Sen A, Smith T (1995) Gravity Models of spatial interaction behavior. Springer, Berlin
Thioulouse J, Chessel D, Champely S (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ Ecol Stat 2:1–14
Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999
Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39:1193–221
Upton G, Fingleton B (1985) Spatial data analysis by example. Wiley, Hoboken, NJ
Waldhör T (1996) The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Stat Med 15:887–892
Willekens FJ (1983) Specification and calibration of spatial interaction models: a contingency-table perspective and an application to intra-urban migration in Rotterdam. Tijdschrift voor Economische en Sociale Geografie 74:239–252
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Proof of (7)
U being orthogonal, ∑ i f i c i α c i β = ∑ i u i α u i β = δ αβ and \(\sum_i f_i c_{i\alpha}=\sum_i \sqrt{f_i}u_{i\alpha} =\sum_i u_{i0}u_{i\alpha}=\delta_{\alpha0}\).
Proof of (9)
independence implies the functional form σ ij = δ ij g(f i ) where g(f) expresses a possible size dependence. Consider the aggregation of regions j into super-region J, with aggregated field \(X_J=\sum\nolimits_{j\in J}f_j X_j/f_J\), where \(f_J:=\sum\nolimits_{j\in J}f_j\). By construction,
that is \(f_J^2 g(f_J)=\sum\nolimits_{j\in J}f_j^2 g(f_j)\), with unique solution g(f j ) = σ2/f j (and g(f J ) = σ2/f J ), where \(\sigma^2=\hbox{Var}(\bar{X})\).
Proof of (10)
\(\hat{\sigma}_{\alpha\beta}:=\hbox{Cov}(\hat{X}_\alpha,\hat{X}_\beta)= \sum\nolimits_{ij} f_i f_j c_{i\alpha}c_{j\beta}\hbox{Cov}(X_i,X_j) =\sigma^2 \sum\nolimits_i f_i c_{i\alpha}c_{i\beta}=\sigma^2\sum\nolimits_i u_{i\alpha}u_{i\beta}=\sigma^2\delta_{\alpha\beta}\).
Proof of (11)
\(\sum\nolimits_{\alpha\ge1}\hat{x}^2_\alpha= \sum\nolimits_{ij}\sqrt{f_if_j}x_ix_j\sum\nolimits_{\alpha\ge0}u_{i\alpha} u_{j\alpha}-\hat{x}^2_0=\sum\nolimits_i f_i x_i^2-\bar{x}^2=\hbox{var}(x)\). Also, \(\hbox{var}_{{\rm loc}}(x)=\frac{1}{2}\sum\nolimits_{ij}e_{ij}(x_i-x_j)^2=\sum\nolimits_i f_i x_i^2-\sum\nolimits_{ij}e_{ij}x_ix_j= \sum\nolimits_i f_i x_i^2-\bar{x}^2-\sum\nolimits_{\alpha\ge1}\lambda_\alpha\sum\nolimits_i c_{i\alpha} x_i \sum\nolimits_j c_{j\alpha} x_j= \hbox{var}(x)-\sum\nolimits_{\alpha\ge1}\lambda_\alpha\hat{x}^2_\alpha\).
Proof of (12) and (13)
define
Under H 0, the distribution of the non-trivial modes is exchangeable, i.e. f(a) = f(π(a)). By symmetry, E π(a α ) = 1/(n − 1), E π(a 2 α ) = s(x)/(n − 1)2 where s(x) = ∑ β ≥ 1 a 2 β /(n − 1) and E π(a α a β ) = (1 − s(x)/(n − 1))/[(n − 1)(n − 2)] for α ≠ β. Further substitution proves the result.
Proof of the semi-negative definiteness of Q in (20)
for any vector h,
Relation between the eigen-decompositions of E (s) (t) and Q in (20)
in matrix notation, \(Q=\Uppi^{\frac{1}{2}} R\Uppi^{-\frac{1}{2}}\), and hence, \(Q\sqrt{f}=0\) by (19), showing \(u_0=\sqrt{f}\) with μ 0 = 0. Consider another, non-trivial eigenvector u α of Q, with eigenvalue μ α , orthogonal to \(\sqrt{f}\) by construction. Identity \(E(t)=\Uppi \exp(t R)\) together with (5) yield
Rights and permissions
About this article
Cite this article
Bavaud, F. Testing spatial autocorrelation in weighted networks: the modes permutation test. J Geogr Syst 15, 233–247 (2013). https://doi.org/10.1007/s10109-013-0179-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10109-013-0179-2
Keywords
- Bootstrap
- Local variance
- Markov and semi-Markov processes
- Moran’s I
- Permutation test
- Spatial autocorrelation
- Spatial filtering
- Weighted networks