Journal of Geographical Systems

, Volume 11, Issue 1, pp 67–87 | Cite as

Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

Original Article

Abstract

The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

Keywords

Geostatistics Spatial autocorrelation Classification and regression trees (CART) West Nile virus Landscape epidemiology Mosquito vectors 

JEL Classification

C21 

References

  1. Adelman JD, Ewers BE, Mackay DS (2008) Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration. Tree Physiol 28:647–658Google Scholar
  2. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ (2004) Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4(4):360–378. doi:10.1089/vbz.2004.4.360 CrossRefGoogle Scholar
  3. Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman, HarlowGoogle Scholar
  4. Burrows SN, Gower ST, Clayton MK, Mackay DS, Ahl DE, Norman JM, Diak G (2002) Application of geostatistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design. Ecosystems 5:667–679Google Scholar
  5. Camp NJ, Slattery ML (2002) Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Causes Cont 13(9):813–823. doi:10.1023/A:1020611416907 CrossRefGoogle Scholar
  6. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ (2002) West Nile virus. Lancet Infect Dis 2:519–529. doi:10.1016/S1473-3099(02)00368-7 CrossRefGoogle Scholar
  7. CDC (2003) Epidemic/epizootic West Nile virus in the United States: Guidelines for surveillance, prevention, and control, centers for disease control, US Department of Health and Human ServicesGoogle Scholar
  8. CDC (2008) Statistics, surveillance, and control. Retrieved 23 January 2008, from http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm
  9. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  10. Das A, Lele SR, Glass GE, Shields TM, Patz J (2002) Modelling a discrete spatial response using generalized linear mixed models: application to Lyme disease vectors. Int J Geogr Inf Sci 16:151–166. doi:10.1080/13658810110099134 CrossRefGoogle Scholar
  11. De’ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83(4):1105–1117Google Scholar
  12. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11):3178–3192CrossRefGoogle Scholar
  13. DeGaetano AT (2005) Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int J Biometeorol 49(5):345–353. doi:10.1007/s00484-004-0242-2 CrossRefGoogle Scholar
  14. Diuk-Wasser MA, Brown HE, Andreadis TG, Fish D (2006) Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Vector Borne Zoonotic Dis 6(3):283–295. doi:10.1089/vbz.2006.6.283 CrossRefGoogle Scholar
  15. Ebert CHV (1988) Disasters: violence of nature and threats by man. Dubuque, Kendall/HuntGoogle Scholar
  16. ECDOH (2005) West Nile virus and other arbovirus five year surveillance report: 2000–2004. Erie County Department of Health, Erie County New YorkGoogle Scholar
  17. Epstein PR (2001) Climate change and emerging infectious diseases. Microbes Infect 3(9):747–754. doi:10.1016/S1286-4579(01)01429-0 CrossRefGoogle Scholar
  18. Estrada-Peña A (1998) Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from Advanced Very High Resolution Radiometer satellite imagery. J Med Entomol 35(6):989–995Google Scholar
  19. Gleiser RM, Gorla DE, Schelotto G (2000) Population dynamics of Aedes albifasciatus (Diptera: Culicidae) South of Mar Chiquita Lake, Central Argentina. J Med Entomol 37(1):21–26Google Scholar
  20. Graham AJ (2004) Spatial analysis for epidemiology. Acta Trop 91:219–225. doi:10.1016/j.actatropica.2004.05.001 CrossRefGoogle Scholar
  21. Hayes RO, Maxwell EL, Mitchell CJ, Woodzick TL (1985) Detection, identification, and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting satellites. Bull World Health Organ 63:361–374Google Scholar
  22. Hubalek Z, Halouzka J (2000) West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650Google Scholar
  23. Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  24. Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P (2005) West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11(3):425–429Google Scholar
  25. Kitron U (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445Google Scholar
  26. Kramer LD, Li J, Pei-Yong S (2007) West Nile virus. Lancet Neurol 6:171–181. doi:10.1016/S1474-4422(07)70030-3 CrossRefGoogle Scholar
  27. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673. doi:10.2307/1939924 CrossRefGoogle Scholar
  28. Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information systems in applied insect ecology. Annu Rev Entomol 38(1):303–327. doi:10.1146/annurev.en.38.010193.001511 CrossRefGoogle Scholar
  29. Loranty MM, Mackay DS, Ewers BE, Adelman JD, Kruger EL (2008) Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient. Water Resour Res 44Google Scholar
  30. Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, Katz N, Liljebjelke KA, Biggerstaff BJ, Fine AD (2001) Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358(9278):261–264. doi:10.1016/S0140-6736(01)05480-0 CrossRefGoogle Scholar
  31. Nicholson MC, Mather TN (1996) Evaluating Lyme disease risks using geographic information systems and geospatial analytical methods. J Med Entomol 33(5):711–720Google Scholar
  32. O’Leary DR, Marfin AA, Montgomery SP, Kipp AM, Lehman JA, Biggerstaff BJ, Elko VL, Collins PD, Jones JE, Campbell GL (2004) The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis 4(1):61–70. doi:10.1089/153036604773083004 CrossRefGoogle Scholar
  33. Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging(or re-emerging) discipline. Trends Ecol Evol 20(6):328–336. doi:10.1016/j.tree.2005.03.009 CrossRefGoogle Scholar
  34. Petersen LR, Marfin AA (2005) Shifting epidemiology of Flaviviridae. J Travel Med 12(suppl 1):S3–S11Google Scholar
  35. Piegorsch WW, Bailer AJ (2005) Analyzing environmental data. Wiley, ChichesterCrossRefGoogle Scholar
  36. Platonov AE, Shipulin GA, Shipulina OY, Tyutyunnik EN, Frolochkina TI, Lanciotti RS, Yazyshina S, Platonova OV, Obukhov IL, Zhukov AN, Vengerov YY, Pokrovskii VI (2001) Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Emerg Infect Dis 7:128–132Google Scholar
  37. Pratt HD, Moore CG (1993) Mosquitoes of public health importance and their control. Atlanta, Centers for Disease Control and Prevention, United States Department of Health and Human ServicesGoogle Scholar
  38. Rappole JH, Derrickson SR, Hubalek Z (2000) Migratory birds and the spread of West Nile virus in the western hemisphere. Emerg Infect Dis 6:319–328Google Scholar
  39. Ryan PA, Lyons SA, Alsemgeest D, Thomas P, Kay BH (2004) Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: an example using light trap data, in Redland Shire, Southeastern Queensland, Australia. J Med Entomol 41(6):1143–1156CrossRefGoogle Scholar
  40. Spielman A, Pollack RJ, Kiszewski AE, Telford SR (2001) Issues in public health entomology. Vector Borne Zoonotic Dis 1(1):3–19. doi:10.1089/153036601750137606 CrossRefGoogle Scholar
  41. Srividya A (2002) A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg 67(5):480–489Google Scholar
  42. Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240. doi:10.2307/143141 CrossRefGoogle Scholar
  43. Trawinski PR, Mackay DS (2008) Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes. Vector Borne Zoonotic Dis 8(4):505–522. doi:10.1089/vbz.2007.0202
  44. Turell MJ, Dohm DJ, Sardelis MR, O’guinn ML, Andreadis TG, Blow JA (2005) An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol 42(1):57–62. doi:10.1603/0022-2585(2005)042[0057:AUOTPO]2.0.CO;2 CrossRefGoogle Scholar
  45. Turell MJ, O’Guinn M, Oliver J (2000) Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62(3):413–414Google Scholar
  46. USDA (1986) Soil survey of Erie County, New York. Soil Conservation Service, United States Department of AgricultureGoogle Scholar
  47. Weinberger M, Pitlik SD, Gandacu D, Lang R, Nassar F, David DB, Rubenstein E, Izthaki A, Mishal J, Kitzes R, Siegman-Igra Y, Giladi M, Pick N, Mendelson E, Bin H, Shohat T, Chowers MY (2001) West Nile fever outbreak, Israel, 2000: epidemiologic aspects. Emerg Infect Dis 7:686–691CrossRefGoogle Scholar
  48. White BJ, Andrew DR, Mans NZ, Ohajuruka OA, Garvin MC (2006) West Nile Virus in Mosquitoes of Northern Ohio, 2003. Am J Trop Med Hyg 75(2):346–349. Copyright © 2006 by The American Society of Tropical Medicine and HygieneGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of GeographyState University of New York at BuffaloBuffaloUSA

Personalised recommendations