Skip to main content

Volatility and VaR forecasting in the Madrid Stock Exchange

Abstract

This paper provides an empirical study to assess the forecasting performance of a wide range of models for predicting volatility and VaR in the Madrid Stock Exchange. The models performance was measured by using different loss functions and criteria. The results show that FIAPARCH processes capture and forecast more accurately the dynamics of IBEX-35 returns volatility. It is also observed that assuming a heavy-tailed distribution does not improve models ability for predicting volatility. However, when the aim is forecasting VaR, we find evidence of that the Student’s t FIAPARCH outperforms the models it nests the lower the target quantile.

This is a preview of subscription content, access via your institution.

References

  • Andersen TG, Bollerslev T (1998) Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39:885–905

    Article  Google Scholar 

  • Arteche J (2004) Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J Econom 119:131–154

    Article  Google Scholar 

  • Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59

    Article  Google Scholar 

  • Baillie RT, Bollerslev T, Mikkelsen H (1996) Fractionally integrated generalized autoregressive conditional heteroscedasticity. J Econom 74:3–30

    Article  Google Scholar 

  • Bauwens L, Laurent S, Rombouts JVK (2006) Multivariate GARCH models: a survey. J Appl Econom 21:79–109

    Article  Google Scholar 

  • Black F (1976) Studies of stock price volatility changes. In: Proceedings from the American statistical association. Business and economic statistics section, pp 177–181

  • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econom 31:307–327

    Article  Google Scholar 

  • Bollerslev T (1987) A conditional heteroskedastic time series model for speculative prices and rates of return. Rev Econ Stat 69:542–547

    Article  Google Scholar 

  • Bollerslev T, Chou RY, Kroner KF (1992) ARCH modeling in finance. J Econom 52:5–59

    Article  Google Scholar 

  • Bollerslev T, Engle RF (1993) Common persistence in conditional variances. Econometrica 61:167–186

    Article  Google Scholar 

  • Bollerslev T, Mikkelsen H (1996) Modeling and pricing long memory in stock market volatility. J Econom 73:151–184

    Article  Google Scholar 

  • Bollerslev T, Mikkelsen H (1999) Long-term equity anticipation securities and stock market volatility dynamics. J Econom 92:75–99

    Article  Google Scholar 

  • Bollerslev T, Wooldridge JM (1992) Quasi-maximum likelihood estimation and inference in dynamics models with time-varying covariances. Econom Rev 11:143–172

    Article  Google Scholar 

  • Brailsford TJ, Faff RW (1996) An evaluation of volatility forecasting techniques. J Bank Finance 20:419–438

    Article  Google Scholar 

  • Breidt FJ, Crato N, De Lima P (1998) The detection and estimation of long memory in stochastic volatility. J Econom 83:325–348

    Article  Google Scholar 

  • Brooks C, Persand G (2003) The effect of asymmetries on stock index return value-at-risk estimates. J Risk Finance 4:29–42

    Article  Google Scholar 

  • Caporin M (2003) Identification of long memory GARCH models. Stat Methods Appl 12:133–151

    Google Scholar 

  • Chung CF (1999) Estimating the fractionally integrated GARCH model. Manuscript. National Taiwan University, Taiwan

  • Conrad C, Haag BR (2006) Inequality constraints in the fractionally integrated GARCH model. J Financ Econom 4:413–449

    Article  Google Scholar 

  • Danielsson J, Shin H, Zigrand JP (2004) The impact of risk regulation on price dynamics. J Bank Finance 28:1069–1087

    Article  Google Scholar 

  • Davidson J (2004) Moment and memory properties of linear conditional heteroscedasticity models, and a new model. J Bus Econ Stat 22:16–29

    Article  Google Scholar 

  • Diebold FX, Inoue A (1999) Long memory and structural change. Manuscript. New York University, Stern School of Business, Department of Finance

  • Diebold FX, Mariano R (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–264

    Article  Google Scholar 

  • Diebold FX, Gunther TA, Tay SA (1998) Evaluating density forecasts with applications to financial risk management. Int Econ Rev 39:863–883

    Article  Google Scholar 

  • Ding Z, Granger CWJ (1996) Modeling volatility persistence of speculative returns: a new approach. J Econom 73:185–215

    Article  Google Scholar 

  • Ding Z, Granger CWJ, Engle RF (1993) A long memory property of stock market returns and a new model. J Empir Finance 1:83–106

    Article  Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50:987–1008

    Article  Google Scholar 

  • Engle RF (2001) Garch 101: the use of ARCH/GARCH models in applied econometrics. J Econ Perspect 15:157–168

    Article  Google Scholar 

  • Engle RF, Bollerslev T (1986) Modeling the persistence of conditional variances. Econom Rev 5:1–50

    Article  Google Scholar 

  • Engle RF, Lilien DM, Robins RP (1987) Estimating time varying risk premia in the term structure: the ARCH-M model. Econometrica 55:391–407

    Article  Google Scholar 

  • Engle RF, Manganelli S (2004) CAViaR: conditional value at risk by regression quantiles. J Bus Econ Stat 22:367–381

    Article  Google Scholar 

  • Ferreira MA, López JA (2005) Evaluating interest rate covariance models within a Value-at-Risk framework. J Financ Econom 3:126–168

    Article  Google Scholar 

  • Fiorentini G, Sentana E, Calzolari G (2003) Maximum likelihood estimation and inference in multivariate conditional heteroskedastic dynamic regression models with Student t innovations. J Bus Econ Stat 21:532–546

    Article  Google Scholar 

  • Giraitis L, Kokoszka P, Leipus R (2000) Stationary ARCH models: dependence structure and central limit theorem. Econom Theory 16:3–22

    Google Scholar 

  • Glosten LR, Jagannathan R, Runkle D (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Finance 48:1779–1801

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhnik IM (1980) Tables of integrals, series and products. Academic, New York

    Google Scholar 

  • Granger CWJ, Ding Z (1996) Varieties of long memory models. J Econom 73:61–77

    Article  Google Scholar 

  • Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH(1,1)?. J Appl Econom 20:873–889

    Article  Google Scholar 

  • Hansen PR, Lunde A (2006) Consistent ranking of volatility models. J Econom 131:97–121

    Article  Google Scholar 

  • Hidalgo J (1997) Non-parametric estimation with strongly dependent multivariate time-series. J Time Ser Anal 18:95–122

    Article  Google Scholar 

  • Higgins M, Bera A (1992) A class of non-linear ARCH models. Int Econ Rev 33:137–158

    Article  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  Google Scholar 

  • Morgan JP (1996) RiskMetrics—technical document, 4th edn. Morgan Guaranty Trust Company, New York

    Google Scholar 

  • Jorion P (2001) Value at risk: the new benchmark for controlling financial risk. McGraw-Hill, London

    Google Scholar 

  • Jorion P (2002) Fallacies about the effects of market risk management systems. J Risk 5:75–96

    Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  Google Scholar 

  • Komunjer I (2005) Quasi-maximum likelihood estimation for conditional quantiles. J Econom 128:137–164

    Article  Google Scholar 

  • Lee KY (1991) Are the GARCH models best in out-of-sample performance?. Econ Lett 37:305–308

    Article  Google Scholar 

  • León A, Mora J (1999) Modeling conditional heteroscedasticity: application to the IBEX 35 stock-return index. Span Econ Rev 3:215–238

    Google Scholar 

  • Ling S, McAleer M (2002) Necessary and sufficient moment conditions for the GARCH(r, s) and asymmetric power GARCH(r, s) models. Econom Theory 18:722–729

    Article  Google Scholar 

  • Lobato IN, Robinson PM (1997) A non-parametric test for I(0). Rev Econ Stud 65:475–495

    Article  Google Scholar 

  • Lobato IN, Savin NE (1998) Real and spurious long memory properties of stock market data. J Bus Econ Stat 16:261–268

    Article  Google Scholar 

  • López JA (1999) Methods for evaluating value-at-Risk estimates. Federal Reserve Bank of San Francisco Economic Review, vol 2, pp 3–17

  • López JA, Walter CA (2001) Evaluating covariance matrix forecasts in a value-at-risk framework. J Risk 3:69–98

    Google Scholar 

  • Lucas A (2000) A note on optimal estimation from a risk-management perspective under possibly misspecified tail behavior. J Bus Econ Stat 18:31–39

    Article  Google Scholar 

  • Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36:1279–1313

    Article  Google Scholar 

  • Mármol F, Reboredo JC (2000) Dependencia temporal en la volatilidad estocástica. Una aplicación al índice IBEX 35. Centro de Investigación Económica y Financiera Working Paper no. 4. Fundación Caixa Galicia

  • Mincer J, Zarnowitz V (1969) The evaluation of economic forecasts. In: Mincer J (ed) Economic forecasts and expectations. NBER, New York

    Google Scholar 

  • Morana C, Beltratti A (2004) Structural change and long-range dependence in volatility of exchange rates: either, neither or both? J Empir Finance 11:629–658

    Article  Google Scholar 

  • Muller UA, Dacorogna MM, Davé RD, Olsen RB, Pictet OV, von Weizsacker JE (1997) Volatilites of different times resolutions—analyzing the dynamics of markets components. J Empir Finance 4:213–239

    Article  Google Scholar 

  • Nelson CR (1976) Applied time series analysis. Holden-Day, San Francisco

    Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347–370

    Article  Google Scholar 

  • Newey W, West K (1987) A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708

    Article  Google Scholar 

  • Newey W, Steigerwald D (1997) Asymptotic bias for quai-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65:587–599

    Article  Google Scholar 

  • Ñíguez TM, Rubia A (2006) Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence. J Forecast 25:439–458

    Article  Google Scholar 

  • Pagan A (1986) Two stage and related estimators and their applications. Rev Econ Stud 53:517–538

    Article  Google Scholar 

  • Pantula SG (1986) Modeling the persistence of conditional variance: a comment. Econom Rev 5:71–74

    Article  Google Scholar 

  • Perron PY, Ng S (1996) Useful modifications to some unit-root tests with dependent errors and their local asymptotic properties. Rev Econ Stud 63:435–463

    Article  Google Scholar 

  • Poon SH, Granger CWJ (2003) Forecasting volatility in financial markets. J Econ Lit 41:478–539

    Article  Google Scholar 

  • Robinson PM (2003) Time series with long memory. Oxford University Press, Oxford

    Google Scholar 

  • Ryden T, Teräsvirta T, Asbrink S (1998) Stylized facts of daily returns series and the hidden Markov model. J Appl Econom 13:217–244

    Article  Google Scholar 

  • Sentana E (1995) Quadratic ARCH models. Rev Econ Stud 62:639–661

    Article  Google Scholar 

  • Sentana E, Wadhwani S (1992) Feedback traders and stock return autocorrelations: evidence from a century of daily data. Econ J 102:415–425

    Article  Google Scholar 

  • Schwert GW (1989) Why does stock market volatility change over time?. J Finance 44:1115–1153

    Article  Google Scholar 

  • Straumann D, Mikosch T (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann Stat 34:2449–2495

    Article  Google Scholar 

  • Tse YK (1998) The conditional heteroscedasticity of the yen-dollar exchange rate. J Appl Econom 13:49–55

    Article  Google Scholar 

  • Vilasuso J (2002) Forecasting exchange rate volatility. Econ Lett 76:59–64

    Article  Google Scholar 

  • Weiss AA (1986) Asymptotic theory of ARCH models: estimation and testing. Econom Theory 2:107–131

    Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–26

    Article  Google Scholar 

  • White H (1994) Estimation, inference and specification analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Zakoian J (1994) Threshold heteroscedasticity model. J Econ Dyn Control 15:931–955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trino-Manuel Ñíguez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ñíguez, TM. Volatility and VaR forecasting in the Madrid Stock Exchange. Span Econ Rev 10, 169–196 (2008). https://doi.org/10.1007/s10108-007-9030-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10108-007-9030-6

Keywords

JEL Classification