Skip to main content
Log in

Discrete potential mean field games: duality and numerical resolution

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constraints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achdou, Y., Kobeissi, Z.: Mean field games of controls: finite difference approximations (2020)

  3. Achdou, Y., Laurière, M.: Mean Field Games and Applications: Numerical Aspects. In: Cardaliaguet, P., Porretta, A. (eds) Mean Field Games. Lecture Notes in Mathematics, vol 2281. Springer, Cham. (2020). https://doi.org/10.1007/978-3-030-59837-2_4

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, New York (2011)

    Book  MATH  Google Scholar 

  5. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benamou, J.D., Carlier, G.: Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benamou, J.D., Carlier, G., Di Marino, S., Nenna, L.: An entropy minimization approach to second-order variational mean-field games. Math. Models Methods Appl. Sci. 29(08), 1553–1583 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benamou, J.D., Carlier, G., Santambrogio, F.: Variational mean field games. In: Active Particles, vol. 1, pp. 141–171. Springer (2017)

  9. Bonnans, J., Hadikhanloo, S., Pfeiffer, L.: Schauder estimates for a class of potential mean field games of controls. Appl. Math. Optim. 83(3), 1431–1464 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnans, J.F.: Convex and Stochastic Optimization. Universitext Series. Springer-Verlag, Berlin (2019)

    Book  Google Scholar 

  11. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Science & Business Media, Berlin (2000)

    Book  MATH  Google Scholar 

  12. Briceño-Arias, L., Kalise, D., Kobeissi, Z., Laurière, M., González, A.M., Silva, F.J.: On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: Proceedings and Surveys 65, 330–348 (2019)

  13. Briceno-Arias, L.M., Kalise, D., Silva, F.J.: Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56(2), 801–836 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22(5), 1287–1317 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cardaliaguet, P., Hadikhanloo, S.: Learning in mean field games: the fictitious play. ESAIM Control Optim. Calcul. Var. 23(2), 569–591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cardaliaguet, P., Mészáros, A.R., Santambrogio, F.: First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54(5), 2672–2709 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chow, Y., Li, W., Osher, S., Yin, W.: Algorithm for Hamilton–Jacobi equations in density space via a generalized Hopf formula. J. Sci. Comput. 80(2), 1195–1239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Combettes, P.L.: Perspective functions: properties, constructions, and examples. Set-Valued Var. Anal. 26(2), 247–264 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erbar, M., Rumpf, M., Schmitzer, B., Simon, S.: Computation of optimal transport on discrete metric measure spaces. Numer. Math. 144(1), 157–200 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    MATH  Google Scholar 

  23. Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos, R., Pietquin,O. :Concave utility reinforcement learning: the mean-field game viewpoint. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pp. 489–497 (2022)

  24. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)

  25. Gomes, D.A., Mohr, J., Souza, R.R.: Discrete time, finite state space mean field games. J. Math. Pures et Appl. 93(3), 308–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gomes, D.A., Saude, J.: A mean-field game approach to price formation. Dyn. Games Appl. pp. 1–25 (2020)

  27. Graber, P., Mullenix, A., Pfeiffer, L.: Weak solutions for potential mean field games of controls. Nonlinear Differ. Equ. Appl. 28(5), 1–34 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Graber, P.J., Bensoussan, A.: Existence and uniqueness of solutions for Bertrand and Cournot mean field games. Appl. Math. Optim. vol 77. https://doi.org/10.1007/s00245-016-9366-0 (2015)

  29. Graber, P.J., Ignazio, V., Neufeld, A.: Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule. J. Math. Pures Appl. 148, 150–198 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Graber, P.J., Mouzouni, C.: Variational mean field games for market competition. In: PDE models for multi-agent phenomena, pp 93–114. Springer (2018)

  31. Hadikhanloo, S., Silva, F.J.: Finite mean field games: fictitious play and convergence to a first order continuous mean field game. J. Math. Pures Appl. 132, 369–397 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. He, B., Tao, M., Yuan, X.: Alternating direction method with gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. i-le cas stationnaire. Comptes Rendus Math. 343(9), 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. ii-horizon fini et contrôle optimal. Comptes Rendus Math. 343(10), 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mészáros, A.R., Silva, F.J.: A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. 104(6), 1135–1159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Prosinski, A., Santambrogio, F.: Global-in-time regularity via duality for congestion-penalized mean field games. Stochastics 89(6–7), 923–942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123(1), 46–63 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis, vol. 36. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  41. Santambrogio, F.: A modest proposal for MFG with density constraints. Netw. Heterog. Media 7(2), 337–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Santambrogio, F.: Crowd motion and evolution PDEs under density constraints. ESAIM Proc. Surv. 64, 137–157 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by the FiME Lab Research Initiative (Institut Europlace de Finance). The third author was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lavigne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

We detail here the calculation of the projection on Q and the non-linear proximity operator in (24), for a running cost of the form

$$\begin{aligned} \ell (t,x,\rho ) = \sum _{y\in S} \rho (y) \beta (t,x,y) + \chi _{\varDelta (S)}(\rho ). \end{aligned}$$

The adaptation to the case where \(\ell \) is defined by (33) is straightforward.

1.1 A.1 Projection on Q

We detail the computation of \({{\,\textrm{proj}\,}}_Q\), as it appears in (20) and (29). First notice that the projection is decoupled in space and time, then for any \((t,x) \in {\mathcal {T}} \times S\) and \(({\bar{a}},{\bar{b}}) \in {\mathbb {R}} \times {\mathbb {R}}(S)\), we need to compute

$$\begin{aligned} {{\,\textrm{proj}\,}}_{Q_{t,x}}({\bar{a}},{\bar{b}}) = \mathop {\mathrm {arg\,min}}\limits _{(a,b) \in Q_{t,x}} \ (a-{\bar{a}})^{2}/2 + \sum _{y\in S} (b(y)-{\bar{b}}(y))^2/2, \end{aligned}$$

where \(Q_{t,x} = \left\{ (a,b) \in {\mathbb {R}} \times {\mathbb {R}}(S), \, a + b(y) - \beta (y) \le 0 \right\} \). The corresponding problem is

$$\begin{aligned} \min _{a \in {\mathbb {R}}} \, \Bigg ( (a-{\bar{a}})^{2}/2 + \min _{{\begin{array}{c} b \in {\mathbb {R}}(S) \\ b(y) \le \beta (y) - a, \; \forall y\in S \end{array}}} \ \, \sum _{y\in S} (b(y)-{\bar{b}}(y))^2/2 \Bigg ). \end{aligned}$$
(35)

For any \(a\in {\mathbb {R}}\), the solution of the inner minimization problem is given by

$$\begin{aligned} b^\star (a,y) := \min \{{\bar{b}}(y),\beta (y) - a\}, \quad \forall y \in S. \end{aligned}$$

Then replacing into (35), the minimization problem is now given by

$$\begin{aligned} \min _{a \in {\mathbb {R}}} g(a), \quad g(a) := (a-{\bar{a}})^{2}/2 + \sum _{y\in S} \max (0,a-{\tilde{\beta }}(y))^2/2, \end{aligned}$$

where \({\tilde{\beta }}(y) := \beta (y)-{\bar{b}}(y)\). It is now relatively easy to minimize g. Let us sort the sequence \(({\tilde{\beta }}(y))_{y \in S}\), that is, let us consider \((y_i)_{i\in \{0,\ldots ,n-1\}}\) such that \({\tilde{\beta }}(y_0) \le \cdots \le {\tilde{\beta }}(y_{n-1})\). It is obvious that the function g is strictly convex and polynomial of degree 2 on each of the intervals \((-\infty , {\tilde{\beta }}(y_0))\), \(({\tilde{\beta }}(y_0),{\tilde{\beta }}(y_1))\),..., and \(({\tilde{\beta }}(y_{n-1}),+\infty )\). One can identify on which of these intervals a stationary point of g exists, by evaluating \(\partial g({\tilde{\beta }}(y_i)\), for all \(i=0,...,n-1\). Then one can obtain an analytic expresison of the (unique) stationary point \(a^\star \), which minimizes g. Finally, we have \({{\,\textrm{proj}\,}}_{Q_{t,x}}({\bar{a}},{\bar{b}})= (a^\star ,b^\star (a^\star , \cdot ))\).

1.2 A.2 Entropic proximity operator

Here we detail the computation of the solution to (24). For notational purpose we set \(c_1 = \tau (- u' + \gamma ')\) and \(c_2 =\tau (\beta + \varvec{A}^\star P' + \varvec{S}^\star u')\). By definition of the running cost \(\ell \), we have that

$$\begin{aligned} \sum _{(t,x) \in {\mathcal {T}} \times S} \tilde{\varvec{\ell }}[m_1,w](t,x) = \langle w, \beta \rangle + \chi _{{{\,\mathrm{{{\textbf {dom}}}}\,}}(\tilde{\varvec{\ell }})}(m_1,w). \end{aligned}$$

Problem (24) writes

$$\begin{aligned} \min _{(m_1,w) \in {\mathcal {R}}}&\langle m_1, c_1 \rangle + \langle w ,c_2 \rangle + \frac{1}{\tau } d_{KL}((m_1,w),(m_1',w')) \\ \text {subject to: }&{\left\{ \begin{array}{ll} \begin{array}{l} m_1(t,x) \le 1 \\ m_1(t,x) - \sum _{y \in S} w(t,x,y)= 0. \end{array} \end{array}\right. } \end{aligned}$$

To find the solution, we define the following Lagrangian with associated multipliers \((\lambda _1,\lambda _2) \in {\mathbb {R}}({\mathcal {T}} \times S) \times {\mathbb {R}}_{+}(\bar{{\mathcal {T}}} \times S)\):

$$\begin{aligned}&{\mathcal {L}}(m_1,w,\lambda _1,\lambda _2) = \langle m_1, c_1 \rangle + \langle w ,c_2 \rangle + d_{KL}((m_1,w),(m_1',w')) \\&\quad + \sum _{(t,x) \in {\mathcal {T}} \times S} \lambda _1(t,x)\Big ( m_1(t,x) - \sum _{y\in S} w(t,x,y) \Big )+ \sum _{(s,x) \in \bar{{\mathcal {T}}} \times S} \lambda _2(s,x)( m_1(s,x) - 1). \end{aligned}$$

For any \((t,s,x,y) \in {\mathcal {T}} \times \bar{{\mathcal {T}}} \times S \times S\), a saddle point of the Lagrangian is given by the following first order conditions,

$$\begin{aligned} {\left\{ \begin{array}{ll} {\hat{m}}_1(T,x) &{}= m_1'(T,x) \exp (- \lambda _2(T,x) - c_1(T,x)),\\ {\hat{m}}_1(t,x) &{}= m_1'(t,x) \exp (-\lambda _1(t,x) - \lambda _2(t,x)-c_1(t,x)),\\ {\hat{w}}(t,x,y) &{}= w'(t,x,y) \exp (\lambda _1(t,x) - c_2(t,x,y)), \\ {\hat{m}}_1(t,x) &{}= \sum _{y' \in S}{\hat{w}}(t,x,y'),\\ 0 &{} = \min \left\{ \lambda _2(s,x), {\hat{m}}_1(s,x) - 1\right\} . \end{array}\right. } \end{aligned}$$
(36)

Case 1: \(\lambda _2(s,x) > 0\). At time \(s=T\) we have that \({\hat{m}}_1(s,x) = 1\). For any \(s<T\) we have that \({\hat{m}}_1(s,x) = 1\) and \(\sum _{y \in S}{\hat{w}}(s,x,y) = 1\) and by a direct computation we have that

$$\begin{aligned} {\left\{ \begin{array}{ll} {\hat{m}}_1(s,x) &{} = 1,\\ {\hat{w}}(s,x,y) &{} = w'(s,x,y) \exp (-c_2(s,x,y)) C(s,x), \\ \lambda _1(s,x) &{} = \ln \left( C(s,x) \right) , \\ \lambda _2(s,x) &{} = \ln \left( m_1'(s,x)/C(s,x)) \right) - c_1(s,x), \end{array}\right. } \end{aligned}$$
(37)

where \(C(s,x) = \sum _{y \in S } w'(s,x,y) \exp (-c_2(s,x,y))\).

Case 2: \(\lambda _2(s,x) = 0\). At time \(s=T\) we have that \({\hat{m}}_1(s,x) = m_1'(s,x) \exp (-c_1(s,x))\). For any \(s<T\) we have by a direct computation

$$\begin{aligned} {\left\{ \begin{array}{ll} {\hat{m}}_1(s,x) &{}= m_1'(s,x) C(s,x)^{-1} \exp (-c_1(s,x)),\\ {\hat{w}}(s,x,y) &{}= w'(s,x,y) C(s,x) \exp (- c_2(s,x,y)), \\ \lambda _1(s,x)&{} = \ln \left( C(s,x) \right) ,\\ \lambda _2(s,x) &{}= 0, \end{array}\right. } \end{aligned}$$
(38)

where \(C(s,x) = \Big (m_1'(s,x) \exp (-c_1(s,x)) / \sum _{y \in S } w'(s,x,y) \exp (- c_2(s,x,y)) \Big )^{1/2}. \)

In order to identify which of the two cases arises, one can compute a solution with formula (37) and check a posteriori that \(\lambda _2(s,x) > 0\). If this is not the case, we deduce that the solution to (36) is given by (38).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnans, J.F., Lavigne, P. & Pfeiffer, L. Discrete potential mean field games: duality and numerical resolution. Math. Program. 202, 241–278 (2023). https://doi.org/10.1007/s10107-023-01934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-023-01934-8

Keywords

Mathematics Subject Classification

Navigation