Skip to main content
Log in

Disjunctive cuts in Mixed-Integer Conic Optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Building on conic duality, we formulate a cut-generating conic program for separating disjunctive cuts, and investigate the impact of the normalization condition on its resolution. In particular, we show that a careful selection of normalization guarantees its solvability and conic strong duality. Then, we highlight the shortcomings of separating conic-infeasible points in an outer-approximation context, and propose conic extensions to the classical lifting and monoidal strengthening procedures. Finally, we assess the computational behavior of various normalization conditions in terms of gap closed, computing time and cut sparsity. In the process, we show that our approach is competitive with the internal lift-and-project cuts of a state-of-the-art solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Personal communication with Gurobi and Mosek developers.

  2. Our code is released at https://github.com/mtanneau/CLaP.

  3. Code available at https://github.com/mtanneau/CLaP.

  4. Personal communication with CPLEX developers.

References

  1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: M. Goemans, J. Correa (eds.) Integer Programming and Combinatorial Optimization, pp. 37–48. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9_4

  2. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. 122(1), 1–20 (2010). https://doi.org/10.1007/s10107-008-0239-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Math. Program. 126(2), 351–363 (2011). https://doi.org/10.1007/s10107-009-0282-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas, E.: Disjunctive programming. In: Hammer, P., Johnson, E., Korte, B. (eds.) Discrete Optimization II, Annals of Discrete Mathematics, vol. 5, pp. 3–51. Elsevier (1979). https://doi.org/10.1016/S0167-5060(08)70342-X

  5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58(1), 295–324 (1993). https://doi.org/10.1007/BF01581273

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 Programming by Lift-and-Project in a Branch-and-Cut Framework. Manage. Sci. (1996). https://doi.org/10.1287/mnsc.42.9.1229

    Article  MATH  Google Scholar 

  7. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4(4), 224–234 (1980). https://doi.org/10.1016/0377-2217(80)90106-X

    Article  MathSciNet  MATH  Google Scholar 

  8. Balas, E., Perregaard, M.: Lift-and-project for mixed 0–1 programming: recent progress. Discret. Appl. Math. 123(1), 129–154 (2002). https://doi.org/10.1016/S0166-218X(01)00340-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0–1 programming. Math. Program. 94(2), 221–245 (2003). https://doi.org/10.1007/s10107-002-0317-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Numerical Analysis and Optimization, pp. 1–35. Springer (2015)

  11. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society Industrial Applied Mathematics (2001). https://doi.org/10.1137/1.9780898718829

    Article  MATH  Google Scholar 

  12. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Günlük, O., Woeginger, G.J. (eds.) Integer Programming and Combinatoral Optimization, pp. 52–64. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20807-2_5

    Chapter  MATH  Google Scholar 

  13. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4(2), 151–179 (2012). https://doi.org/10.1007/s12532-012-0037-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. Prog Combin Optim 18, 521–541 (2011)

    MATH  Google Scholar 

  16. Cadoux, F., Lemaréchal, C.: Reflections on generating (disjunctive) cuts. EURO J Computational Optimization 1(1), 51–69 (2013). https://doi.org/10.1007/s13675-012-0006-4

    Article  MATH  Google Scholar 

  17. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3), 595–614 (1999). https://doi.org/10.1007/s101070050106

    Article  MathSciNet  MATH  Google Scholar 

  18. Çezik, M., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Program. 104(1), 179–202 (2005). https://doi.org/10.1007/s10107-005-0578-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Coey, C., Lubin, M., Vielma, J.P.: Outer approximation with conic certificates for mixed-integer convex problems. Math. Program. Comput. 12, 249–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Conforti, M., Wolsey, L.A.: Facet separation with one linear program. Math. Program. 178(1), 361–380 (2019). https://doi.org/10.1007/s10107-018-1299-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Dadush, D., Dey, S., Vielma, J.: The split closure of a strictly convex body. Oper. Res. Lett. 39(2), 121–126 (2011). https://doi.org/10.1016/j.orl.2011.02.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986). https://doi.org/10.1007/BF02592064

    Article  MathSciNet  MATH  Google Scholar 

  23. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128(1), 205–230 (2011). https://doi.org/10.1007/s10107-009-0300-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Friberg, H.A.: Cblib 2014: a benchmark library for conic mixed-integer and continuous optimization. Math. Program. Comput. 8(2), 191–214 (2016). https://doi.org/10.1007/s12532-015-0092-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Friberg, H.A.: Facial reduction heuristics and the motivational example of mixed-integer conic optimization. Tech. rep. (2016). http://www.optimization-online.org/DB_FILE/2016/02/5324.pdf

  26. Geoffrion, A.M.: Elements of large-scale mathematical programming. Manage. Sci. 16(11), 676–691 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp. 155–210. Springer, US (2006)

    Google Scholar 

  28. Gurobi Optimization, L.: Gurobi optimizer reference manual (2018). https://www.gurobi.com

  29. IBM: IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/ilog-cplex-optimization-studio

  30. Kazachkov, A.: Non-Recursive Cut Generation. Ph.D. thesis, Carnegie Mellon University (2018). https://doi.org/10.1184/R1/6720881.v1

  31. Kılınç, M.R., Linderoth, J., Luedtke, J.: Lift-and-project cuts for convex mixed integer nonlinear programs. Math. Program. Comput. 9(4), 499–526 (2017). https://doi.org/10.1007/s12532-017-0118-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Kılınç-Karzan, F., Steffy, D.E.: On sublinear inequalities for mixed integer conic programs. Math. Program. 159(1), 585–605 (2016). https://doi.org/10.1007/s10107-015-0968-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1–2), 463–491 (2015). https://doi.org/10.1007/s10107-015-0903-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Kilinç-Karzan, F.: On Minimal Valid Inequalities for Mixed Integer Conic Programs. Math. Oper. Res. 41(2), 477–510 (2015). https://doi.org/10.1287/moor.2015.0737

    Article  MathSciNet  MATH  Google Scholar 

  35. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison of solvers for convex MINLP. Optim. Eng. 20(2), 397–455 (2019). https://doi.org/10.1007/s11081-018-9411-8

    Article  MathSciNet  Google Scholar 

  36. Kronqvist, J., Misener, R.: A disjunctive cut strengthening technique for convex minlp. Optimization and Engineering, pp. 1–31 (2020). https://doi.org/10.1007/s11081-020-09551-6

  37. Legat, B., Dowson, O., Garcia, J.D., Lubin, M.: MathOptInterface: a data structure for mathematical optimization problems. INFORMS J. Comput. (2020). https://doi.org/10.1287/ijoc.2021.1067

  38. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended Formulations in Mixed-Integer Convex Programming. In: Louveaux, Q., Skutella, M. (eds.) Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization (IPCO 2016), Lecture Notes in Computer Science, vol. 9682, pp. 102–113 (2016)

  39. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Polyhedral approximation in mixed-integer convex optimization. Math. Program. 172(1), 139–168 (2018). https://doi.org/10.1007/s10107-017-1191-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Modaresi, S.: Valid inequalities and reformulation techniques for mixed integer nonlinear programming. Ph.D. thesis, University of Pittsburgh (2016)

  41. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015). https://doi.org/10.1016/j.orl.2014.10.006

    Article  MathSciNet  MATH  Google Scholar 

  42. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1), 575–611 (2016). https://doi.org/10.1007/s10107-015-0866-5

    Article  MathSciNet  MATH  Google Scholar 

  43. MOSEK ApS: The MOSEK Optimization Suite. https://www.mosek.com/

  44. MOSEK ApS: Mosek modeling cookbook (2020). https://docs.mosek.com/modeling-cookbook/index.html

  45. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In: Aardal, K., Gerards, B. (eds.) Integer Programming and Combinatorial Optimization, pp. 348–360. Springer, Berlin Heidelberg, Berlin, Heidelberg (2001)

    Chapter  Google Scholar 

  46. Rockafellar, R.T.: Convex analysis, vol. 28. Princeton university press (1970)

  47. Serra, T.: Reformulating the disjunctive cut generating linear program. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03709-2

    Article  MathSciNet  MATH  Google Scholar 

  48. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999). https://doi.org/10.1007/s101070050103

    Article  MathSciNet  MATH  Google Scholar 

  49. Trespalacios, F., Grossmann, I.E.: Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods (2014). https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201400037

  50. Trespalacios, F., Grossmann, I.E.: Cutting plane algorithm for convex generalized disjunctive programs. INFORMS J. Comput. 28(2), 209–222 (2016). https://doi.org/10.1287/ijoc.2015.0669

    Article  MathSciNet  MATH  Google Scholar 

  51. Yildiz, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone. Oper. Res. Lett. 43(4), 432–437 (2015). https://doi.org/10.1016/j.orl.2015.06.001

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, Y., Kuno, T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0–1 mixed-integer convex nonlinear programs. Industrial & engineering chemistry research 45(1), 187–196 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The second author was supported by an FRQNT excellence doctoral scholarship, and a Mitacs Globalink research award. We thank Pierre Bonami, Andrea Tramontani and Sven Wiese for several helpful discussions on the topic, as well as the anonymous referees for their comments and suggestions that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Tanneau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodi, A., Tanneau, M. & Vielma, JP. Disjunctive cuts in Mixed-Integer Conic Optimization. Math. Program. 199, 671–719 (2023). https://doi.org/10.1007/s10107-022-01844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01844-1

Keywords

Mathematics Subject Classification

Navigation