Skip to main content
Log in

Perturbed Fenchel duality and first-order methods

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We show that the iterates generated by a generic first-order meta-algorithm satisfy a canonical perturbed Fenchel duality inequality. The latter in turn readily yields a unified derivation of the best known convergence rates for various popular first-order algorithms including the conditional gradient method as well as the main kinds of Bregman proximal methods: subgradient, gradient, fast gradient, and universal gradient methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abernethy, J., Lai,K., Levy,K. , Wang,J.: Faster rates for convex-concave games. arXiv preprint arXiv:1805.06792, 2018

  2. Abernethy, J.,Wang,J.: On Frank-Wolfe and equilibrium computation. In Advances in Neural Information Processing Systems, pages 6584–6593, 2017

  3. Bach, F.: Duality between subgradient and conditional gradient methods. SIAM J. Optim. 25(1), 115–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H., Combettes,P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, volume 408. Springer, 2011

  6. Beck,A.: First-Order Methods in Optimization, volume 25. SIAM, 2017

  7. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31(3), 167–175 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bello-Cruz, J.: On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions. Set-Valued and Variational Analysis 25(2), 245–263 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein,J., Lewis,A.: Convex Analysis and Nonlinear Optimization. Springer, New York, 2000

  11. Bubeck,S., Lee,Y. , Singh,M.: A geometric alternative to Nesterov’s accelerated gradient descent. arXiv preprint arXiv:1506.08187, 2015

  12. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diakonikolas, J., Orecchia, L.: The approximate duality gap technique: a unified theory of first-order methods. SIAM J. Optim. 29(1), 660–689 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dragomir,R., Taylor,A., d’Aspremont,A., Bolte,J.: Optimal complexity and certification of Bregman first-order methods. Mathematical Programming, pages 1–43, 2021

  15. Drusvyatskiy, D., Fazel, M., Roy, S.: An optimal first order method based on optimal quadratic averaging. SIAM J. Optim. 28(1), 251–271 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freund, R., Grigas, P.: New analysis and results for the Frank-Wolfe method. Math. Program. 155(1–2), 199–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gutman, D., Peña, J.: A unified framework for Bregman proximal methods: subgradient, gradient, and accelerated gradient schemes. arXiv preprint arXiv:1812.10198, 2018

  18. Gutman, D., Peña, J.: Convergence rates of proximal gradient methods via the convex conjugate. SIAM J. Opt., 29(1):162–174, 2019

  19. Hanzely, F., Richtarik, P., Xiao, L.: Accelerated Bregman proximal gradient methods for relatively smooth convex optimization. Comput. Optim. Appl. 79(2), 405–440 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiriart-Urruty,J., Lemaréchal,C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Berlin, 1993

  21. Jaggi,M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, volume 28 of JMLR Proceedings, pages 427–435, 2013

  22. Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J. Optim. 26(1), 57–95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu,H.:“Relative continuity”for non-Lipschitz nonsmooth convex optimization using stochastic (or deterministic) mirror descent. INFORMS J. Opt., 1(4):288–303, 2019

  24. Lu, H., Freund, R., Nesterov, Y.: Relatively smooth convex optimization by first-order methods, and applications. SIAM J. Optim. 28(1), 333–354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nemirovsky,A., Yudin,D.: Problem Complexity and Method Efficiency in Optimization. Wiley, 1983

  26. Nesterov,Y.: A method for solving the convex programming problem with convergence rate \(\cal{O}(1/k^2)\). Doklady AN SSSR (in Russian). (English translation. Soviet Math. Dokl.), 269:543–547, 1983

  27. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152(1–2), 381–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nesterov, Y.: Complexity bounds for primal-dual methods minimizing the model of objective function. Math. Program. 171(1), 311–330 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peña. J.: Convergence of first-order methods via the convex conjugate. Oper. Res. Lett. 45, 561–564 (2017)

  32. Rockafellar, T.: Convex Analysis. Princeton University Press, Princeton, 1970

  33. Su,W., Boyd,S., Candès,E.: A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights. In Advances in Neural Information Processing Systems, pages 2510–2518, 2014

  34. Teboulle,M.: A simplified view of first order methods for optimization. Math. Program., p 1–30, 2018

  35. Van Nguyen, Q.: Variable quasi-Bregman monotone sequences. Numeric. Alg. 73(4), 1107–1130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Nguyen, Q.: Forward-backward splitting with Bregman distances. Vietnam J. Math. 45(3), 519–539 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang,J., Abernethy,J.: Acceleration through optimistic no-regret dynamics. In Advances in Neural Information Processing Systems, p 3824–3834, 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier F. Peña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutman, D.H., Peña, J.F. Perturbed Fenchel duality and first-order methods. Math. Program. 198, 443–469 (2023). https://doi.org/10.1007/s10107-022-01779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01779-7

Mathematics Subject Classification

Navigation