Aktürk, M.S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Oper. Res. Lett. 37(3), 187–191 (2009)
MathSciNet
MATH
Google Scholar
Angulo, G., Ahmed, S., Dey, S.S., Kaibel, V.: Forbidden vertices. Math. Oper. Res. 40(2), 350–360 (2015)
MathSciNet
MATH
Google Scholar
Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)
MathSciNet
MATH
Google Scholar
Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indicator variables. Math. Program. 170(1), 141–176 (2018)
MathSciNet
MATH
Google Scholar
Atamtürk, A., Gómez, A.: Rank-one convexification for sparse regression. Optimization Online. http://www.optimization-online.org/DB_HTML/2019/01/7050.html. (2019)
Atamtürk, A., Gómez, A., Han, S.: Sparse and smooth signal estimation: convexification of L0 formulations. J. Mach. Learn. Res. 3, 1–43 (2021)
MATH
Google Scholar
Bacci, T., Frangioni, A., Gentile, C., Tavlaridis-Gyparakis, K.: New MINLP formulations for the unit commitment problems with ramping constraints. Optimization Online. http://www.optimization-online.org/DB_FILE/2019/10/7426.pdf. (2019)
Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Numerical Analysis and Optimization, pp. 1–35. Springer (2015)
Bertsimas, D., Cory-Wright, R., Pauphilet, J.: Mixed-projection conic optimization: A new paradigm for modeling rank constraints. arXiv preprint arXiv:2009.10395 (2020a)
Bertsimas, D., King, A.: OR Forum - An algorithmic approach to linear regression. Oper. Res. 64(1), 2–16 (2016)
MathSciNet
MATH
Google Scholar
Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern optimization lens. Ann. Stat. 44(2), 813–852 (2016)
MathSciNet
MATH
Google Scholar
Bertsimas, D., Pauphilet, J., Van Parys, B., et al.: Sparse regression: scalable algorithms and empirical performance. Stat. Sci. 35(4), 555–578 (2020b)
MathSciNet
MATH
Google Scholar
Bertsimas, D., Van Parys, B.: Sparse high-dimensional regression: Exact scalable algorithms and phase transitions. Ann. Statist. 1, 300–323 (2020)
MathSciNet
MATH
Google Scholar
Bien, J., Taylor, J., Tibshirani, R.: A lasso for hierarchical interactions. Ann. Stat. 41(3), 1111 (2013)
MathSciNet
MATH
Google Scholar
Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM J. Opt. 24(2), 643–677 (2014)
MathSciNet
MATH
Google Scholar
Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)
MathSciNet
MATH
Google Scholar
Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2017)
MathSciNet
MATH
Google Scholar
Carrizosa, E., Mortensen, L., Morales, D.R.: On linear regression models with hierarchical categorical variables. Tech. rep. (2020)
Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)
MathSciNet
MATH
Google Scholar
Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization. AIChE J. 60(6), 2211–2227 (2014)
Google Scholar
Cozad, A., Sahinidis, N.V., Miller, D.C.: A combined first-principles and data-driven approach to model building. Comput. Chem. Eng. 73, 116–127 (2015)
Google Scholar
Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: Continuous and mixed integer optimization perspectives. J. Mach. Learn. Res. 15, 1–4 (2021)
MathSciNet
MATH
Google Scholar
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)
Dong, H.: On integer and MPCC representability of affine sparsity. Oper. Res. Lett. 47(3), 208–212 (2019)
MathSciNet
MATH
Google Scholar
Dong, H., Ahn, M., Pang, J.-S.: Structural properties of affine sparsity constraints. Math. Program. 176(1–2), 95–135 (2019)
MathSciNet
MATH
Google Scholar
Dong, H., Chen, K., Linderoth, J.: Regularization vs. relaxation: A conic optimization perspective of statistical variable selection. arXiv preprint arXiv:1510.06083 (2015)
Dong, H., Linderoth, J.: On valid inequalities for quadratic programming with continuous variables and binary indicators. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization, pp. 169–180. Springer, Berlin (2013)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)
MathSciNet
MATH
Google Scholar
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
MathSciNet
MATH
Google Scholar
Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a project and lift approach. Comput. Opt. Appl. 63(3), 705–735 (2016)
MathSciNet
MATH
Google Scholar
Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)
MathSciNet
MATH
Google Scholar
Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35(2), 181–185 (2007)
MathSciNet
MATH
Google Scholar
Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes. Oper. Res. Lett. 37(3), 206–210 (2009)
MathSciNet
MATH
Google Scholar
Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformulations with applications in design problems. Oper. Res. 59(5), 1225–1232 (2011)
MathSciNet
MATH
Google Scholar
Frangioni, A., Gentile, C., Hungerford, J.: Decompositions of semidefinite matrices and the perspective reformulation of nonseparable quadratic programs. Math. Oper. Res. 45(1), 15–33 (2020)
MathSciNet
MATH
Google Scholar
Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programs with indicator variables. Math. Program. 124, 183–205 (2010)
MathSciNet
MATH
Google Scholar
Han, S., Gómez, A., Atamtürk, A.: 2x2 convexifications for convex quadratic optimization with indicator variables. arXiv preprint arXiv:2004.07448 (2020)
Hardy, G.H.: Course of Pure Mathematics. Courier Dover (1908). (Publications)
Hastie, T., Tibshirani, R., Wainwright, M.: Statistical learning with sparsity: the lasso and generalizations. In: Monographs on Statistics and Applied Probability, vol. 143. Chapman and Hall/CRC (2015)
Hazimeh, H., Mazumder, R.: Learning hierarchical interactions at scale: a convex optimization approach. In: Chiappa, S. and Calandra, R., editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 1833–1843. PMLR
Hazimeh, H., Mazumder, R., Saab, A.: Sparse regression at scale: branch-and-bound rooted in first-order optimization. arXiv preprint arXiv:2004.06152 (2020)
Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear programs featuring “on/off” constraints. Comput. Opt. Appl. 52(2), 537–558 (2012)
Huang, J., Breheny, P., Ma, S.: A selective review of group selection in high-dimensional models. Stat. Sci. Rev. J. Inst. Math. Stat. 27(4),(2012)
Jeon, H., Linderoth, J., Miller, A.: Quadratic cone cutting surfaces for quadratic programs with on-off constraints. Dis. Opt. 24, 32–50 (2017)
MathSciNet
MATH
Google Scholar
Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 345–356. Springer. (2014)
Küçükyavuz, S., Shojaie, A., Manzour, H., Wei, L.: Consistent second-order conic integer programming for learning Bayesian networks. arXiv preprint arXiv:2005.14346 (2020)
Manzour, H., Küçükyavuz, S., Wu, H.-H., Shojaie, A.: Integer programming for learning directed acyclic graphs from continuous data. INFORMS J. Opt. 3(1), 46–73 (2021)
MathSciNet
Google Scholar
Miller, A.: Subset selection in regression. Chapman and Hall/CRC (2002)
Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1–2), 575–611 (2016)
MathSciNet
MATH
Google Scholar
Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
MathSciNet
MATH
Google Scholar
Pilanci, P., Wainwright, M.J., El Ghaoui, L.: Sparse learning via Boolean relaxations. Math. Program. 151, 63–87 (2015)
MathSciNet
MATH
Google Scholar
Richard, J.-P.P., Tawarmalani, M.: Lifting inequalities: a framework for generating strong cuts for nonlinear programs. Math. Program. 121(1), 61–104 (2010)
MathSciNet
MATH
Google Scholar
Sato, T., Takano, Y., Miyashiro, R., Yoshise, A.: Feature subset selection for logistic regression via mixed integer optimization. Comput. Opt. Appl. 64(3), 865–880 (2016)
MathSciNet
MATH
Google Scholar
Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999)
MathSciNet
MATH
Google Scholar
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol., pp. 267–288 (1996)
Vielma, J.P.: Small and strong formulations for unions of convex sets from the Cayley embedding. Math. Program. 177(1–2), 21–53 (2019)
MathSciNet
MATH
Google Scholar
Wang, A. L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution complexity and convex hull results. Forthcoming in Math. Program. (2020a)
Wang, A.L., Kılınç-Karzan, F.: On convex hulls of epigraphs of QCQPs. In: Bienstock, D., Zambelli, G. (eds.) Integer Programming and Combinatorial Optimization, pp. 419–432. Cham. Springer International Publishing (2020b)
Wang, A. L., Kılınç-Karzan, F.: On the tightness of SDP relaxations of QCQPs. Forthcoming in Math. Program. (2021)
Wei, L., Gómez, A., Küçükyavuz, S.: On the convexification of constrained quadratic optimization problems with indicator variables. In: Bienstock, D., Zambelli, G. (eds.) Integer Programming and Combinatorial Optimization, pp. 433–447. Cham. Springer International Publishing (2020)
Wu, B., Sun, X., Li, D., Zheng, X.: Quadratic convex reformulations for semicontinuous quadratic programming. SIAM J. Opt. 27(3), 1531–1553 (2017)
MathSciNet
MATH
Google Scholar
Xie, W., Deng, X.: Scalable algorithms for the sparse ridge regression. SIAM J. Opt. 30(4), 3359–3386 (2020)
MathSciNet
MATH
Google Scholar
Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)
MathSciNet
MATH
Google Scholar
Zheng, X., Sun, X., Li, D.: Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach. INFORMS J. Comput. 26(4), 690–703 (2014)
MathSciNet
MATH
Google Scholar