Skip to main content
Log in

The aggregation closure is polyhedral for packing and covering integer programs

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Recently, Bodur, Del Pia, Dey, Molinaro and Pokutta studied the concept of aggregation cuts for packing and covering integer programs. The aggregation closure is the intersection of all aggregation cuts. Bodur et al. studied the strength of this closure, but left open the question of whether the aggregation closure is polyhedral. In this paper, we answer this question in the positive, i.e., we show that the aggregation closure is polyhedral. Finally, we demonstrate that a generalization, the k-aggregation closure, is also polyhedral for all k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4513, pp. 1–15. Springer, Berlin (2007)

    Google Scholar 

  2. Averkov, G.: On finitely generated closures in the theory of cutting planes. Discrete Optim. 9(4), 209–215 (2012)

    Article  MathSciNet  Google Scholar 

  3. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1–3), 3–44 (1998)

    Article  MathSciNet  Google Scholar 

  4. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58(3), 295–324 (1993)

    Article  MathSciNet  Google Scholar 

  5. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0–1 programming. Math. Program. 94(2–3), 221–245 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bodur, M., Del Pia, A., Dey, S.S., Molinaro, M., Pokutta, S.: Aggregation-based cutting-planes for packing and covering integer programs. Math. Program. 171(1), 331–359 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4), 305–337 (1973)

    Article  MathSciNet  Google Scholar 

  8. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271. Springer, Berlin (2014)

    MATH  Google Scholar 

  9. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47(1–3), 155–174 (1990)

    Article  Google Scholar 

  10. Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems. Oper. Res. 31(5), 803–834 (1983)

    Article  Google Scholar 

  11. Dash, S., Günlük, O.: On the strength of gomory mixed-integer cuts as group cuts. Math. Program. 115(2), 387–407 (2008)

    Article  MathSciNet  Google Scholar 

  12. Dash, S., Günlük, O., Morán R., D.A.: Lattice closures of polyhedra. Math. Programm. 181(1), 119–147 (2020)

  13. Dash, S., Günlük, O., Molinaro, M.: On the relative strength of different generalizations of split cuts. Discrete Optim. 16, 36–50 (2015)

    Article  MathSciNet  Google Scholar 

  14. Del Pia, A., Gijswijt, D., Linderoth, J., Zhu, H.: Integer packing sets form a well-quasi-ordering. Oper. Res. Lett. 49(2), 226–230 (2021)

    Article  MathSciNet  Google Scholar 

  15. Del Pia, A., Linderoth, J., Zhu, H.: The aggregation closure for packing and covering polyhedra are polyhedra. Poster Presented at the MIP 2019 Workshop, Boston (2019)

  16. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)

    Article  MathSciNet  Google Scholar 

  17. Fischetti, M., Lodi, A.: On the knapsack closure of 0-1 integer linear programs. Electron. Notes Discrete Math. 36, 799–804 (2010). ISCO 2010—International Symposium on Combinatorial Optimization

  18. Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. Math. Program. 128(1–2), 19–41 (2011)

    Article  MathSciNet  Google Scholar 

  19. Fukasawa, R., Poirrier, L., Xavier, Á.S.: Intersection cuts for single row corner relaxations. Math. Program. Comput. 10(3), 423–455 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64(5), 275–278 (1958)

    Article  MathSciNet  Google Scholar 

  21. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand Corporation (1960)

  22. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  23. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part I. Math. Program. 3, 23–85 (1972)

    Article  Google Scholar 

  24. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra, part II. Math. Program. 3, 359–389 (1972)

    Article  Google Scholar 

  25. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted cover inequalities for 0–1 integer programs: computation. INFORMS J. Comput. 10, 427–437 (1998)

    Article  MathSciNet  Google Scholar 

  26. Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. Study 2, 137–179 (1974)

    Article  MathSciNet  Google Scholar 

  27. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve mips. Oper. Res. 49(3), 363–371 (2001)

    Article  MathSciNet  Google Scholar 

  28. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  Google Scholar 

  29. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)

    Article  MathSciNet  Google Scholar 

  30. Schrijver, A.: On cutting planes. In: Hammer, P.L. (ed) Combinatorics 79, volume 9 of Annals of Discrete Mathematics, pp. 291–296. Elsevier (1980)

  31. Wolsey, L.A.: Faces for a linear inequality in 0–1 variables. Math. Program. 8(1), 165–178 (1975)

    Article  MathSciNet  Google Scholar 

  32. Zemel, E.: Lifting the facets of zero-one polytopes. Math. Program. 15(1), 268–277 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Ricardo Fukasawa for informing us that an independent proof of polyhedrality for aggregation closures, by Alberto Del Pia, Jeff Linderoth, and Haoran Zhu, was the subject of a poster at the Mixed Integer Programming Workshop, 2019. We also would like to thank Haoran Zhu for pointing us to the question about the polyhedrality of k-aggregation closures. We are very grateful to two anonymous referees for their detailed and careful feedback, which helped us to improve the paper.

Funding

Funding was provided by the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Grant Nos. RGPIN-2018-04335, RGPIN-2020-04346, DGECR-2020-00265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanstantsin Pashkovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashkovich, K., Poirrier, L. & Pulyassary, H. The aggregation closure is polyhedral for packing and covering integer programs. Math. Program. 195, 1135–1147 (2022). https://doi.org/10.1007/s10107-021-01723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01723-1

Mathematics Subject Classification

Navigation