Skip to main content

Decreasing minimization on M-convex sets: algorithms and applications

Abstract

This paper is concerned with algorithms and applications of decreasing minimization on an M-convex set, which is the set of integral elements of an integral base-polyhedron. Based on a recent characterization of decreasingly minimal (dec-min) elements, we develop a strongly polynomial algorithm for computing a dec-min element of an M-convex set. The matroidal feature of the set of dec-min elements makes it possible to compute a minimum cost dec-min element, as well. Our second goal is to exhibit various applications in matroid and network optimization, resource allocation, and (hyper)graph orientation. We extend earlier results on semi-matchings to a large degree by developing a structural description of dec-min in-degree bounded orientations of a graph. This characterization gives rise to a strongly polynomial algorithm for finding a minimum edge-cost dec-min orientation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Apollonio, N., Sebő, A.: Minconvex factors of prescribed size in graphs. SIAM J. Discret. Math. 23, 1297–1310 (2009)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bérczi, K., Frank, A.: Supermodularity in unweighted graph optimization, Part I: Branchings and matchings. Math. Oper. Res. 43, 726–753 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bernáth, A.: Personal communication (2021)

  4. 4.

    Bernáth, A., Iwata, S., Király, T., Király, Z., Szigeti, Z.: Recent results on well-balanced orientations. Discret. Optim. 5, 663–676 (2008)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. Amer. Math. Monthly 87, 716–719 (1980)

  6. 6.

    Bokal, D., Brešar, B., Jerebic, J.: A generalization of Hungarian method and Hall’s theorem with applications in wireless sensor networks. Discret. Appl. Math. 160, 460–470 (2012)

  7. 7.

    Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egalitarian graph orientations. J. Gr. Algorithms Appl. 21, 687–708 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Borradaile, G., Migler, T., Wilfong, G.: Density decompositions of networks. J. Gr. Algorithms Appl. 23, 625–651 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  10. 10.

    Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algorithms, pp. 91–96. Academic Press, New York (1973)

    Google Scholar 

  11. 11.

    Edmonds, J.: Matroid intersection. Ann. Discret. Math. 14, 39–49 (1979)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Federgruen, A., Groenevelt, H.: The greedy procedure for resource allocation problems: necessary and sufficient conditions for optimality. Oper. Res. 34, 909–918 (1986)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ford, L.R., Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ (1962)

    MATH  Google Scholar 

  14. 14.

    Frank, A.: On the orientation of graphs. J. Combin. Theory, Ser. B 28, 251–261 (1980)

  15. 15.

    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discret. Math. 5, 22–53 (1992)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  17. 17.

    Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Combin. Theory Ser. B 65, 73–110 (1995)

  18. 18.

    Frank, A., Király, T.: A survey on covering supermodular functions. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 87–126. Springer, Berlin (2009)

    Chapter  Google Scholar 

  19. 19.

    Frank, A., Király, T., Király, Z.: On the orientation of graphs and hypergraphs. Discret. Appl. Math. 131, 385–400 (2003)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Frank, A., Murota, K.: Discrete decreasing minimization, Part II: Views from discrete convex analysis. arXiv: 1808.08477 (2018)

  21. 21.

    Frank, A., Murota, K.: Decreasing minimization on M-convex sets: Background and structures. Math. Program., to appear. arXiv: 2007.09616 (2020)

  22. 22.

    Frank, A., Murota, K.: Fair integral flows. Submitted for publication. arXiv: 1907.02673 (2020)

  23. 23.

    Frank, A., Murota, K.: Fair integral submodular flows. Submitted for publication. arXiv:2012.073252012, 07325 (2020)

  24. 24.

    Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Program. 42, 489–563 (1988)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Math. Oper. Res. 5, 186–196 (1980)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Fujishige, S.: Structures of polyhedra determined by submodular functions on crossing families. Math. Program. 29, 125–141 (1984)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics 58, Elsevier, Amsterdam (2005)

  28. 28.

    Goemans, M.X., Gupta, S., Jaillet, P.: Discrete Newton’s algorithm for parametric submodular function minimization. In: Eisenbrand, F., Koenemann, J. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 10328, pp. 212–227 (2017)

  29. 29.

    Hakimi, S.L.: On the degrees of the vertices of a directed graph. J. Frankl. Inst. 279, 290–308 (1965)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Harada, Y., Ono, H., Sadakane, K., Yamashita, M.: Optimal balanced semi-matchings for weighted bipartite graphs. IPSJ Digit. Courier 3, 693–702 (2007)

    Article  Google Scholar 

  31. 31.

    Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. J. Algorithms 59, 53–78 (2006)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization problems. Ann. Oper. Res. 153, 257–296 (2007)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Hochbaum, D.S., Hong, S.-P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69, 269–309 (1995)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Bellman, R., Hall, M., Jr. (eds.) Combinatorial Analysis (Proceedings of the Symposia of Applied Mathematics 10) pp. 113–127. American Mathematical Society, Providence, Rhode Island (1960)

  35. 35.

    Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Boston (1988)

    MATH  Google Scholar 

  36. 36.

    Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Jiang, H.: Minimizing convex functions with integral minimizers. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp. 976–985 (2021)

  38. 38.

    Katoh, N., Ibaraki, T.: Resource allocation problems. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 159–260. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  39. 39.

    Katoh, N., Shioura, A., Ibaraki, T.: Resource allocation problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, vol. 5, 2nd edn., pp. 2897–2988. Springer, Berlin (2013)

    Chapter  Google Scholar 

  40. 40.

    Katrenič, J., Semanišin, G.: Maximum semi-matching problem in bipartite graphs. Discussiones Mathematicae Gr. Theory 33, 559–569 (2013)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Király, T., Lau, L.-C.: Approximate min-max theorems for Steiner rooted-orientations of graphs and hypergraphs. J. Combin. Theory Ser. B 98, 1233–1252 (2008)

  42. 42.

    Levin, A., Onn, S.: Shifted matroid optimization. Oper. Res. Lett. 44, 535–539 (2016)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7, 97–107 (1974)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Megiddo, N.: A good algorithm for lexicographically optimal flows in multi-terminal networks. Bull. Am. Math. Soc. 83, 407–409 (1977)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Moriguchi, S., Shioura, A., Tsuchimura, N.: M-convex function minimization by continuous relaxation approach–Proximity theorem and algorithm. SIAM J. Optim. 21, 633–668 (2011)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  48. 48.

    Nash-Williams, C.St.J.A.: On orientations, connectivity and odd vertex pairings in finite graphs. Can. J. Math. 12, 555–567 (1960)

  49. 49.

    Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. Ser. A 118, 237–251 (2009)

    MathSciNet  Article  Google Scholar 

  50. 50.

    Radzik, T.: Fractional combinatorial optimization. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, 2nd edn., pp. 1311–1355. Springer, New York (2013)

    Chapter  Google Scholar 

  51. 51.

    Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control. Amer. Math. Mon. 46, 281–283 (1939)

    Article  Google Scholar 

  52. 52.

    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  54. 54.

    Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247–255 (1985)

    MathSciNet  Article  Google Scholar 

  55. 55.

    Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26, 305–321 (1978)

    MathSciNet  Article  Google Scholar 

  56. 56.

    Zhou, H., Hou, X.: Strongly connected orientation with minimum lexicographic order of indegrees. arXiv:2103.01017 (2021)

Download references

Acknowledgements

We are particularly grateful to an anonymous referee of the paper whose fundamental suggestions made a significant contribution to the final form of our work. This research was supported through the program “Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in 2019. The two weeks we could spend at Oberwolfach provided an exceptional opportunity to conduct particularly intensive research. The research was partially supported by the National Research, Development and Innovation Fund of Hungary (FK_18) – No. NKFI-128673, and by CREST, JST, Grant Number JPMJCR14D2, Japan, and JSPS KAKENHI Grant Numbers JP26280004, JP20K11697.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuo Murota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Frank: The research was partially supported by the National Research, Development and Innovation Fund of Hungary (FK_18) – No. NKFI-128673. K. Murota: The research was supported by CREST, JST, Grant Number JPMJCR14D2, Japan, and JSPS KAKENHI Grant Numbers JP26280004, JP20K11697.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frank, A., Murota, K. Decreasing minimization on M-convex sets: algorithms and applications. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01711-5

Download citation

Keywords

  • Network flows
  • Resource allocation
  • Graph orientation
  • Decreasing minimization
  • M-convex set
  • Polynomial algorithm

Mathematics Subject Classification

  • 90C27
  • 05C
  • 68R10