Absil, P.A., Amodei, L., Meyer, G.: Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries. Comput. Stat. 29(3–4), 569–590 (2014)
MathSciNet
MATH
Article
Google Scholar
Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)
MathSciNet
MATH
Article
Google Scholar
Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 80(2), 199–220 (2004)
MathSciNet
MATH
Article
Google Scholar
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)
MATH
Book
Google Scholar
Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359(8), 3769–3789 (2007)
MathSciNet
MATH
Article
Google Scholar
Ammar, G., Martin, C.: The geometry of matrix eigenvalue methods. Acta Appl. Math. 5(3), 239–278 (1986)
MathSciNet
MATH
Article
Google Scholar
Axler, S.: Linear Algebra Done Right. Undergraduate Texts in Mathematics, 3rd edn. Springer, Cham (2015)
MATH
Book
Google Scholar
Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly incomplete information. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 704–711. IEEE (2010)
Bellman, R., Fan, K.: On systems of linear inequalities in Hermitian matrix variables. In: Proceedings on Symposium Pure Mathematics, vol. VII, pp. 1–11. American Mathematical Society, Providence, RI (1963)
Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics, vol. 120, 2nd edn. Academic Press Inc, Orlando, FL (1986)
MATH
Google Scholar
Borel, A.: La cohomologie mod \(2\) de certains espaces homogènes. Comment. Math. Helv. 27, 165–197 (1953)
MathSciNet
MATH
Article
Google Scholar
Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 2(57), 115–207 (1953)
MATH
Article
Google Scholar
Borel, A.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer-Verlag, New York (1991)
Book
Google Scholar
Borel, A., Serre, J.P.: Groupes de Lie et puissances réduites de Steenrod. Am. J. Math. 75, 409–448 (1953)
MATH
Article
Google Scholar
Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)
MathSciNet
MATH
Article
Google Scholar
Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence, RI (2008)
MATH
Google Scholar
Chern, S.S.: On the characteristic classes of complex sphere bundles and algebraic varieties. Am. J. Math. 75, 565–597 (1953)
MathSciNet
MATH
Article
Google Scholar
Chikuse, Y.: Statistics on Special Manifolds. Lecture Notes in Statistics, vol. 174. Springer-Verlag, New York (2003)
MATH
Book
Google Scholar
Curtef, O., Dirr, G., Helmke, U.: Riemannian optimization on tensor products of Grassmann manifolds: applications to generalized Rayleigh-quotients. SIAM J. Matrix Anal. Appl. 33(1), 210–234 (2012)
MathSciNet
MATH
Article
Google Scholar
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)
MathSciNet
MATH
Article
Google Scholar
Ehresmann, C.: Sur la topologie de certains espaces homogènes. Ann. Math. (2) 35(2), 396–443 (1934)
MathSciNet
MATH
Article
Google Scholar
Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)
MathSciNet
MATH
Article
Google Scholar
Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)
MATH
Book
Google Scholar
Grassmann, H.: A New Branch of Mathematics. Open Court Publishing Co., Chicago, IL (1995)
MATH
Google Scholar
Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence, RI (2001)
MATH
Google Scholar
Helmke, U., Hüper, K., Trumpf, J.: Newton’s method on Graßmann manifolds. Preprint (2007). arxiv:0709.2205
Howe, R., Lee, S.T.: Spherical harmonics on Grassmannians. Colloq. Math. 118(1), 349–364 (2010)
MathSciNet
MATH
Article
Google Scholar
Jordan, J., Helmke, U.: Controllability of the QR-algorithm on Hessenberg flags. In: Proceeding of the Fifteenth International Symposium on Mathematical Theory of Network and Systems (MTNS 2002) (2002)
Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vols. I, II. Wiley Classics Library. Wiley, New York (1996)
Google Scholar
Kowalski, O., Szenthe, J.: Erratum: “On the existence of homogeneous geodesics in homogeneous Riemannian manifolds” [Geom. Dedicata 81 (2000), no. 1-3, 209–214; MR1772203 (2001f:53104)]. Geom. Dedicata 84(1–3), 331–332 (2001)
MathSciNet
Article
Google Scholar
Lim, L.H., Wong, K.S.W., Ye, K.: Numerical algorithms on the affine Grassmannian. SIAM J. Matrix Anal. Appl. 40(2), 371–393 (2019)
MathSciNet
MATH
Article
Google Scholar
Lim, L.H., Ye, K.: Numerical algorithms on the flag manifold. Preprint (2019)
Lundström, E., Eldén, L.: Adaptive eigenvalue computations using Newton’s method on the Grassmann manifold. SIAM J. Matrix Anal. Appl. 23(3), 819–839 (2001/02)
Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Probability and Mathematical Statistics: A Series of Monographs and Textbooks. Academic Press, London (1979)
Google Scholar
Massart, E., Absil, P.A.: Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. SIAM J. Matrix Anal. Appl. 41(1), 171–198 (2020)
MathSciNet
MATH
Article
Google Scholar
Monk, D.: The geometry of flag manifolds. Proc. Lond. Math. Soc. 3(9), 253–286 (1959)
MathSciNet
MATH
Article
Google Scholar
Nicolaescu, L.I.: Lectures on the Geometry of Manifolds. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)
MATH
Book
Google Scholar
Nishimori, Y., Akaho, S., Plumbley, M.D.: Riemannian optimization method on the flag manifold for independent subspace analysis. In: International Conference on Independent Component Analysis and Signal Separation, pp. 295–302. Springer (2006)
Nishimori, Y., Akaho, S., Plumbley, M.D.: Natural conjugate gradient on complex flag manifolds for complex independent subspace analysis. In: International Conference on Artificial Neural Networks, pp. 165–174. Springer (2008)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Google Scholar
O’Neill, B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103. Academic Press Inc, New York (1983)
Google Scholar
Pennec, X.: Barycentric subspace analysis on manifolds. Ann. Stat. 46(6A), 2711–2746 (2018)
MathSciNet
MATH
Article
Google Scholar
Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)
MathSciNet
MATH
Article
Google Scholar
Savas, B., Lim, L.H.: Quasi-Newton methods on Grassmannians and multilinear approximations of tensors. SIAM J. Sci. Comput. 32(6), 3352–3393 (2010)
MathSciNet
MATH
Article
Google Scholar
Schulz, V.H.: A Riemannian view on shape optimization. Found. Comput. Math. 14(3), 483–501 (2014)
MathSciNet
MATH
Article
Google Scholar
Stiefel, E.: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comment. Math. Helv. 8(1), 305–353 (1935)
MathSciNet
MATH
Article
Google Scholar
Tojo, K.: Totally geodesic submanifolds of naturally reductive homogeneous spaces. Tsukuba J. Math. 20(1), 181–190 (1996)
MathSciNet
MATH
Article
Google Scholar
Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)
MathSciNet
MATH
Article
Google Scholar
Wang, L., Wang, X., Feng, J.: Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition. Pattern Recogn. 39(3), 456–464 (2006)
MATH
Article
Google Scholar
Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with application to face recognition based on image set. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1–2, Ser. A), 397–434 (2013)
MathSciNet
MATH
Article
Google Scholar