Skip to main content
Log in

Optimization landscape of Tucker decomposition

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Tucker decomposition is a popular technique for many data analysis and machine learning applications. Finding a Tucker decomposition is a nonconvex optimization problem. As the scale of the problems increases, local search algorithms such as stochastic gradient descent have become popular in practice. In this paper, we characterize the optimization landscape of the Tucker decomposition problem. In particular, we show that if the tensor has an exact Tucker decomposition, for a standard nonconvex objective of Tucker decomposition, all local minima are also globally optimal. We also give a local search algorithm that can find an approximate local (and global) optimal solution in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This can be achieved by initializing at 0, or any point with norm O(1).

References

  1. Anandkumar, A., Ge, R.: Efficient approaches for escaping higher order saddle points in non-convex optimization. In: Conference on Learning Theory, pp. 81–102 (2016)

  2. Bandeira, A.S., Boumal, N., Voroninski, V.: On the Low-Rank Approach for Semidefinite Programs Arising in Synchronization and Community Detection. arXiv preprint arXiv:1602.04426 (2016)

  3. Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of local search for low rank matrix recovery. In: Advances in Neural Information Processing Systems, pp. 3873–3881 (2016)

  4. Carbery, A., Wright, J.: Distributional and \(l^q\) norm inequalities for polynomials over convex bodies in \(r^n\). Math. Res. Lett. 8(3), 233–248 (2001)

    Article  MathSciNet  Google Scholar 

  5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  Google Scholar 

  6. Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: an overview. IEEE Trans. Signal Process. 67(20), 5239–5269 (2019)

    Article  MathSciNet  Google Scholar 

  7. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  8. De Lathauwer, L., De Moor, B.: On the best rank-1 and rank-(r 1, r 2,., rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  9. Eldén, L., Savas, B.: A newton-grassmann method for computing the best multilinear rank-(r_1, r_2, r_3) approximation of a tensor. SIAM J. Matrix Anal. Appl. 31(2), 248–271 (2009)

    Article  MathSciNet  Google Scholar 

  10. Frandsen, A., Ge, R.: Understanding composition of word embeddings via tensor decomposition. In: International Conference on Learning Representations (2019)

  11. Ge, R., Huang, F., Jin, C., Yuan, Y.: Escaping from saddle points—online stochastic gradient for tensor decomposition. In: Conference on Learning Theory, pp. 797–842 (2015)

  12. Ge, R., Jin, C., Zheng, Y.: No spurious local minima in nonconvex low rank problems: a unified geometric analysis. In: International Conference on Machine Learning (2017)

  13. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural Information Processing Systems, pp. 2973–2981 (2016)

  14. Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization in matrix factorization. In: Advances in Neural Information Processing Systems, pp. 6151–6159 (2017)

  15. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, vol. 16. pp. 1–84. University Microfilms, Ann Arbor, Michigan, No. 10,085 (1970)

  16. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927)

    Article  Google Scholar 

  17. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1724–1732. JMLR. org (2017)

  18. Koren, Y.: The bellkor solution to the netflix grand prize. Netflix Prize Doc. 81(2009), 1–10 (2009)

    Google Scholar 

  19. Li, Y., Ma, T., Zhang, H.: Algorithmic Regularization in Over-Parameterized Matrix Sensing and Neural Networks with Quadratic Activations. arXiv preprint arXiv:1712.09203 (2017)

  20. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., pp. 129–132. IEEE (2005)

  21. Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  22. Park, D., Kyrillidis, A., Caramanis, C., Sanghavi, S.: Non-square Matrix Sensing Without Spurious Local Minima via the Burer-Monteiro Approach. arXiv preprint arXiv:1609.03240 (2016)

  23. Phan, A.H., Cichocki, A., Tichavskỳ, P.: On fast algorithms for orthogonal tucker decomposition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6766–6770. IEEE (2014)

  24. Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix completion. Math. Program. Comput. 5(2), 201–226 (2013)

    Article  MathSciNet  Google Scholar 

  25. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recogn. 40(3), 993–1003 (2007)

    Article  Google Scholar 

  26. Stewart, G.W.: Perturbation theory for the singular value decomposition. Tech. rep. (1998)

  27. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere i: overview and the geometric picture. IEEE Trans. Inf. Theory 63, 853–884 (2016)

    Article  MathSciNet  Google Scholar 

  28. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2379–2383. IEEE (2016)

  29. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  30. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces. In: European Conference on Computer Vision, pp. 447–460. Springer (2002)

  31. Wang, H., Ahuja, N.: Compact representation of multidimensional data using tensor rank-one decomposition. Vectors 1, 5 (2004)

    Google Scholar 

  32. Wang, M., Duc, K.D., Fischer, J., Song, Y.S.: Operator norm inequalities between tensor unfoldings on the partition lattice. Linear Algebra Its Appl. 520, 44–66 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. BIT Numer. Math. 12(1), 99–111 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Frandsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF Awards CCF-1704656 and CCF-1845171 (CAREER); Sloan Fellowship; and Google Faculty Research Award.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frandsen, A., Ge, R. Optimization landscape of Tucker decomposition. Math. Program. 193, 687–712 (2022). https://doi.org/10.1007/s10107-020-01531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01531-z

Keywords

Mathematics Subject Classification

Navigation