https://developers.google.com/machine-learning/glossary/#logits. Accessed 6 Feb 2020
Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)
Google Scholar
Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 146–155. PMLR, International Convention Centre, Sydney (2017)
Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. In: A. Lodi, V. Nagarajan (eds.) Proceedings of the 20th Conference on Integer Programming and Combinatorial Optimization, pp. 27–42. Springer International Publishing, Cham (2019). arxiv:1811.08359
Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units (2016). arXiv preprint arXiv:1611.01491
Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)
Google Scholar
Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indicator variables. Math. Program. 170, 141–176 (2018)
MathSciNet
MATH
Google Scholar
Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algorithmic Discrete Methods 6(3), 466–486 (1985)
MathSciNet
MATH
Google Scholar
Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)
MathSciNet
MATH
Google Scholar
Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: International Conference on the Principles and Practice of Constraint Programming, pp. 115–129. Springer, Berlin (2011)
Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Optimization and controlled systems: a case study on thermal aware workload dispatching. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 427–433 (2012)
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, pp. 2613–2621 (2016)
Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gomez, A., Salvagnin, D.: On handling indicator constraints in mixed integer programming. Comput. Optim. Appl. 65(3), 545–566 (2016)
MathSciNet
MATH
Google Scholar
Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont, MA (1997)
Google Scholar
Bienstock, D., Muñoz, G., Pokutta, S.: Principled deep neural network training through linear programming (2018). arXiv preprint arXiv:1810.03218
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
MATH
Google Scholar
Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015)
MathSciNet
MATH
Google Scholar
Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2559–2566 (2010)
Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piecewise linear neural network verification. In: Advances in Neural Information Processing Systems (2018)
Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)
Chen, L., Ma, W., Natarajan, K., Simchi-Levi, D., Yan, Z.: Distributionally robust linear and discrete optimization with marginals. Available at SSRN 3159473 (2018)
Cheng, C.H., Nührenberg, G., Ruess, N.: Maximum resilience of artifical neural networks. In: International Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017)
Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., Coppin, B.: Deep reinforcement learning in large discrete action spaces (2015). arxiv:1512.07679
Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: NASA Formal Methods Symposium (2018)
Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J., Kohli, P.: Training verified learners with learned verifiers (2018). arxiv:1805.10265
Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to scalable verification of deep networks. In: Thirty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (2018)
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: International Symposium on Automated Technology for Verification and Analysis. Springer, Cham (2017)
Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811. PMLR, Long Beach, CA (2019). http://proceedings.mlr.press/v97/engstrom19a.html. Accessed 6 Feb 2020
Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization. Constraints 23, 296–309 (2018)
MathSciNet
MATH
Google Scholar
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015). arxiv:1508.06576
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
MATH
Google Scholar
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, pp. 1319–1327 (2013)
Grimstad, B., Andersson, H.: ReLU networks as surrogate models in mixed-integer linear programs. Comput. Chem. Eng. 131, 106580 (2019)
Google Scholar
Haneveld, W.K.K.: Robustness against dependence in pert: an application of duality and distributions with known marginals. In: Stochastic Programming 84 Part I, pp. 153–182. Springer (1986)
Hanin, B.: Universal function approximation by deep neural nets with bounded width and ReLU activations (2017). arXiv preprint arXiv:1708.02691
Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear programs featuring “on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)
MathSciNet
MATH
Google Scholar
Hijazi, H., Bonami, P., Ouorou, A.: A note on linear on/off constraints (2014). http://www.optimization-online.org/DB_FILE/2014/04/4309.pdf. Accessed 6 Feb 2020
Huber, B., Rambau, J., Santos, F.: The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem of zonotopal tiltings. J. Eur. Math. Soc. 2(2), 179–198 (2000)
MathSciNet
MATH
Google Scholar
Huchette, J.: Advanced mixed-integer programming formulations: methodology, computation, and application. Ph.D. thesis, Massachusetts Institute of Technology (2018)
Jeroslow, R., Lowe, J.: Modelling with integer variables. Math. Program. Study 22, 167–184 (1984)
MathSciNet
MATH
Google Scholar
Jeroslow, R.G.: Alternative formulations of mixed integer programs. Ann. Oper. Res. 12, 241–276 (1988)
MathSciNet
Google Scholar
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: International Conference on Computer Aided Verification, pp. 97–117 (2017)
Khalil, E.B., Gupta, A., Dilkina, B.: Combinatorial attacks on binarized neural networks. In: International Conference on Learning Representations (2019)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arxiv:1412.6980
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2000)
MATH
Google Scholar
Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transformations of deep neural networks (2019). arxiv:1905.11428
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Google Scholar
Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for verifying deep neural networks (2019). arxiv:1903.06758
Lombardi, M., Gualandi, S.: A lagrangian propagator for artificial neural networks in constraint programming. Constraints 21(4), 435–462 (2016)
MathSciNet
MATH
Google Scholar
Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In: Proceedings IJCAI, pp. 5472–5478 (2018)
Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)
MathSciNet
MATH
Google Scholar
Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural networks (2017). arxiv:1706.07351
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language (2013)
Mladenov, M., Boutilier, C., Schuurmans, D., Elidan, G., Meshi, O., Lu, T.: Approximate linear programming for logistic Markov decision processes. In: Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 2486–2493. Melbourne, Australia (2017)
Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural networks (2015). https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html. Accessed 6 Feb 2020
Natarajan, K., Song, M., Teo, C.P.: Persistency model and its applications in choice modeling. Manage. Sci. 55(3), 453–469 (2009)
MATH
Google Scholar
Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://distill.pub/2017/feature-visualization. Accessed 6 Feb 2020
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: IEEE European Symposium on Security and Privacy, pp. 372–387 (2016)
Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying robustness to adversarial examples. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 10,900–10,910. Curran Associates Inc. (2018)
Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., Boutilier, C.: CAQL: Continuous action Q-learning (2019). arxiv:1909.12397
Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relaxation barrier to tight robustness verification of neural networks (2019). arxiv:1902.08722
Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 750–756 (2017)
Schweidtmann, A.M., Mitsos, A.: Global deterministic optimization with artificial neural networks embedded. J. Optim. Theory Appl. 180, 925–948 (2019)
MathSciNet
MATH
Google Scholar
Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier networks (2018). arxiv:1810.03370
Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear regions of deep neural networks. In: Thirty-Fifth International Conference on Machine Learning (2018)
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)
Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications, vol. 65. Springer, Berlin (2002)
MATH
Google Scholar
Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer programming. In: International Conference on Learning Representations (2019)
Trespalacios, F., Grossmann, I.E.: Improved big-M reformulation for generalized disjunctive programs. Comput. Chem. Eng. 76, 98–103 (2015)
Google Scholar
Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57(1), 3–57 (2015)
MathSciNet
MATH
Google Scholar
Vielma, J.P.: Embedding formulations and complexity for unions of polyhedra. Manage. Sci. 64(10), 4471–4965 (2018)
Google Scholar
Vielma, J.P.: Small and strong formulations for unions of convex sets from the Cayley embedding. Math. Program. 177, 21–53 (2018)
MathSciNet
MATH
Google Scholar
Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1–2), 49–72 (2011)
MathSciNet
MATH
Google Scholar
Weibel, C.: Minkowski sums of polytopes: combinatorics and computation. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2007)
Weiss, G.: Stochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliability. Oper. Res. 34(4), 595–605 (1986)
MathSciNet
MATH
Google Scholar
Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning (2018)
Wong, E., Schmidt, F., Metzen, J.H., Kolter, J.Z.: Scaling provable adversarial defenses. In: 32nd Conference on Neural Information Processing Systems (2018)
Wu, G., Say, B., Sanner, S.: Scalable planning with Tensorflow for hybrid nonlinear domains. In: Advances in Neural Information Processing Systems, pp. 6276–6286 (2017)
Xiao, K.Y., Tjeng, V., Shafiullah, N.M., Madry, A.: Training for faster adversarial robustness verification via inducing ReLU stability. In: International Conference on Learning Representations (2019)
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolution network (2015). arxiv:1505.00853
Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA-protein binding. Bioinformatics 32(12), 121–127 (2016)
Google Scholar