Skip to main content
Log in

Multi-marginal maximal monotonicity and convex analysis

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Monotonicity and convex analysis arise naturally in the framework of multi-marginal optimal transport theory. However, a comprehensive multi-marginal monotonicity and convex analysis theory is still missing. To this end we study extensions of classical monotone operator theory and convex analysis into the multi-marginal setting. We characterize multi-marginal c-monotonicity in terms of classical monotonicity and firmly nonexpansive mappings. We provide Minty type, continuity and conjugacy criteria for multi-marginal maximal monotonicity. We extend the partition of the identity into a sum of firmly nonexpansive mappings and Moreau’s decomposition of the quadratic function into envelopes and proximal mappings into the multi-marginal settings. We illustrate our discussion with examples and provide applications for the determination of multi-marginal maximal monotonicity and multi-marginal conjugacy. We also point out several open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bartz, S., Reich, S.: Abstract convex optimal antiderivatives. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 29, 435–454 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bartz, S., Reich, S.: Optimal pricing for optimal transport. Set Valued Var. Anal. 22, 467–481 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bartz, S., Bauschke, H.H., Wang, X.: The resolvent order: a unification of the orders by Zarantonello, by Loewner, and by Moreau. SIAM J. Optim. 27, 466–477 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bartz, S., Bauschke, H.H., Wang, X.: A class of multi-marginal $c$-cyclically monotone sets with explicit $c$-splitting potentials. J. Math. Anal. Appl. 461, 333–348 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    Book  Google Scholar 

  7. Beiglböck, M., Griessler, C.: An optimality principle with applications in optimal transport. arXiv preprint arXiv:1404.7054 (2014)

  8. Brezis, H.: Liquid crystals and energy estimates for $S^2$-valued maps. In: Theory and Applications of Liquid Crystals (Minneapolis, Minn., 1985), The IMA Volumes in Mathematics and its Applications, vol. 5, pp. 31–52. Springer (1987)

  9. Carlier, G.: On a class of multidimensional optimal transportation problems. J. Convex Anal. 10, 517–529 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Carlier, G., Nazaret, B.: Optimal transportation for the determinant. ESAIM Control Optim. Calc. Var. 14, 678–698 (2008)

    Article  MathSciNet  Google Scholar 

  11. Di Marino, S., De Pascale, L., Colombo, M.: Multimarginal optimal transport maps for 1-dimensional repulsive costs. Can. J. Math. 67, 350–368 (2015)

    Article  MathSciNet  Google Scholar 

  12. Di Marino, S., Gerolin, A., Nenna, L.: Optimal transportation theory with repulsive costs, topological optimization and optimal transport. Appl. Sci. 9, 204–256 (2017)

    MATH  Google Scholar 

  13. Gangbo, W., McCann, R.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  Google Scholar 

  14. Gangbo, W., Swiech, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51, 23–45 (1998)

    Article  MathSciNet  Google Scholar 

  15. Ghoussoub, N., Maurey, B.: Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discrete Contin. Dyn. Syst. 34, 1465–1480 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ghoussoub, N., Moameni, A.: Symmetric Monge-Kantorovich problems and polar decompositions of vector fields. Geom. Funct. Anal. 24, 1129–1166 (2014)

    Article  MathSciNet  Google Scholar 

  17. Griessler, C.: $c$-Cyclical monotonicity as a sufficient criterion for optimality in the multi-marginal Monge-Kantorovich problem. Proc. Am. Math. Soc. 146, 4735–4740 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kellerer, H.G.: Duality theorems for marginal problems. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 67, 399–432 (1984)

    Article  MathSciNet  Google Scholar 

  19. Kim, Y.-H., Pass, B.: A general condition for Monge solutions in the multi-marginal optimal transport problem. SIAM J. Math. Anal. 46, 1538–1550 (2014)

    Article  MathSciNet  Google Scholar 

  20. Knott, M., Smith, C.S.: On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl. 199, 363–371 (1994)

    Article  MathSciNet  Google Scholar 

  21. Pass, B.: On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial. Differ. Equ. 43, 529–536 (2012)

    Article  MathSciNet  Google Scholar 

  22. Pass, B.: Multi-marginal optimal transport: theory and applications. ESAIM Math. Model. Numer. Anal. 49, 1771–1790 (2015)

    Article  MathSciNet  Google Scholar 

  23. Rochet, J.-C.: A necessary and sufficient condition for rationalizability in a quasilinear context. J. Math. Econ. 16, 191–200 (1987)

    Article  MathSciNet  Google Scholar 

  24. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)

    Article  MathSciNet  Google Scholar 

  25. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  Google Scholar 

  26. Rüschendorf, L.: On $c$-optimal random variables. Stat. Probab. Lett. 27, 267–270 (1996)

    Article  MathSciNet  Google Scholar 

  27. Rüschendorf, L., Uckelmann, L.: Distributions with given marginals and moment problems. In: On Optimal Multivariate Couplings, pp. 261–273. Springer (1997)

  28. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser, New York (2015)

    Book  Google Scholar 

  29. Soloviov, V.: Duality for nonconvex optimization and its applications. Anal. Math. 19, 297–315 (1993)

    Article  MathSciNet  Google Scholar 

  30. Villani, C.: Optimal Transport: Old and New. Springer, New York (2009)

    Book  Google Scholar 

Download references

Acknowledgements

We thank three anonymous referees for their kind and useful remarks. Sedi Bartz was partially supported by a University of Massachusetts Lowell startup grant. Heinz Bauschke and Xianfu Wang were partially supported by the Natural Sciences and Engineering Research Council of Canada. Hung Phan was partially supported by Autodesk, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedi Bartz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartz, S., Bauschke, H.H., Phan, H.M. et al. Multi-marginal maximal monotonicity and convex analysis. Math. Program. 185, 385–408 (2021). https://doi.org/10.1007/s10107-019-01433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01433-9

Keywords

Mathematics Subject Classification

Navigation