Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)
Book
Google Scholar
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032
MathSciNet
Article
MATH
Google Scholar
Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Comput. Chem. Eng. 28(8), 1169–1192 (2004)
Article
Google Scholar
Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discr. Optim. 5(2), 186–204 (2008). https://doi.org/10.1016/j.disopt.2006.10.011
MathSciNet
Article
MATH
Google Scholar
Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119(2), 331–352 (2009)
MathSciNet
Article
Google Scholar
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Book
Google Scholar
Currie, J., Wilson, D.I.: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J. (eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia (2012)
Google Scholar
Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)
MathSciNet
Article
Google Scholar
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. B 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263
MathSciNet
Article
MATH
Google Scholar
Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)
MathSciNet
Article
Google Scholar
den Hertog, D., Kaliski, J., Roos, C., Terlaky, T.: A logarithmic barrier cutting plane method for convex programming. Ann. Oper. Res. 58(2), 67–98 (1995)
MathSciNet
Article
Google Scholar
de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24(3), 665–692 (2016)
MathSciNet
Article
Google Scholar
Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)
MathSciNet
Article
Google Scholar
Floudas, C.A.: Deterministic global optimization. Theory, methods and applications In: Nonconvex Optimization and its Applications, vol. 37. Springer, US (2000)
Book
Google Scholar
GAMSWorld: mixed-integer nonlinear programming library. http://www.gamsworld.org/minlp/minlplib2/html/ (2016). Accessed 24 Nov 2016
Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
MathSciNet
Article
Google Scholar
Gershgorin, S.A.: Uber die Abgrenzung der Eigenwerte einer Matrix. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na 6, 749–754 (1931)
MATH
Google Scholar
Grossmann, I.E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E.: GAMS/DICOPT: A Discrete Continuous Optimization Package (2002)
Gurobi Optimization, I.: Gurobi optimizer reference manual. http://www.gurobi.com (2016)
IBM Corp., IBM: V12.6: User’s Manual for CPLEX. Int. Bus. Mach. Corp. 12(1), 481 (2009)
Google Scholar
Kelley Jr., J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)
MathSciNet
Article
Google Scholar
Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1–3), 89–109 (1995)
MathSciNet
MATH
Google Scholar
Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)
MathSciNet
Article
Google Scholar
Kronqvist, J., Lundell, A., Westerlund, T.: Reformulations for utilizing separability when solving convex MINLP problems. J. Glob. Optim. 71(3), 571–592 (2018). https://doi.org/10.1007/s10898-018-0616-3
MathSciNet
Article
MATH
Google Scholar
Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming, vol. 154. Springer, Berlin (2011)
Google Scholar
Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1–3), 111–147 (1995)
MathSciNet
Article
Google Scholar
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2004)
Book
Google Scholar
Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)
Article
Google Scholar
Slater, M., et al.: Lagrange multipliers revisited. Technical report, Cowles Foundation for Research in Economics, Yale University (1959)
Trespalacios, F., Grossmann, I.E.: Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tech. 86(7), 991–1012 (2014). https://doi.org/10.1002/cite.201400037
Article
Google Scholar
Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)
Article
Google Scholar
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
MathSciNet
Article
Google Scholar
Wei, Z., Ali, M.M.: Outer approximation algorithm for one class of convex mixed-integer nonlinear programming problems with partial differentiability. J. Optim. Theory Appl. 167(2), 644–652 (2015). https://doi.org/10.1007/s10957-015-0715-y
MathSciNet
Article
MATH
Google Scholar
Westerlund, T., Petterson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, S131–S136 (1995)
Article
Google Scholar
Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3(3), 253–280 (2002)
MathSciNet
Article
Google Scholar
Wolfe, P.: A duality theorem for non-linear programming. Q. Appl. Math. 19(3), 239–244 (1961)
MathSciNet
Article
Google Scholar
Zaourar, S., Malick, J.: Quadratic stabilization of Benders decomposition. https://hal.archives-ouvertes.fr/hal-01181273 (2014). Working paper or preprint