Skip to main content
Log in

On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive an explicit formula, as well as an efficient procedure, for constructing a generalized Jacobian for the projector of a given square matrix onto the Birkhoff polytope, i.e., the set of doubly stochastic matrices. To guarantee the high efficiency of our procedure, a semismooth Newton method for solving the dual of the projection problem is proposed and efficiently implemented. Extensive numerical experiments are presented to demonstrate the merits and effectiveness of our method by comparing its performance against other powerful solvers such as the commercial software Gurobi and the academic code PPROJ (Hager and Zhang in SIAM J Optim 26:1773–1798, 2016). In particular, our algorithm is able to solve the projection problem with over one billion variables and nonnegative constraints to a very high accuracy in less than 15 min on a modest desktop computer. More importantly, based on our efficient computation of the projections and their generalized Jacobians, we can design a highly efficient augmented Lagrangian method (ALM) for solving a class of convex quadratic programming (QP) problems constrained by the Birkhoff polytope. The resulted ALM is demonstrated to be much more efficient than Gurobi in solving a collection of QP problems arising from the relaxation of quadratic assignment problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html.

  2. https://www.math.lsu.edu/~hozhang/Software.html.

  3. https://comcen.nus.edu.sg/services/hpc/about-hpc/.

References

  1. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problem based on convex quadratic programming. Math. Program. 89, 341–357 (2001)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Birkhoff, G.: Three observations on linear algebra. Universidad Nacional de Tucumán, Revista, Serie A 5, 147–151 (1946)

    MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Glob. Optim. 10, 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  7. Chiche, A., Gilbert, JCh.: How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem. J. Convex Anal. 23, 425–459 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  9. Cui, Y., Sun, D.F., Toh, K.-C.: On the asymptotic superlinear convergence of the augmented Lagrangian method for semidefinite programming with multiple solutions (2016). arXiv:1610.00875

  10. Delbos, F., Gilbert, JCh.: Global linear convergence of an augmented Lagrangian algorithm to solve convex quadratic optimization problems. J. Convex Anal. 12, 45–69 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78, 837–842 (1983)

    Article  MathSciNet  Google Scholar 

  12. Fischer, A., Kanzow, C.: On finite termination of an iterative method for linear complementarity problems. Math. Program. 74, 279–292 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Fogel, F., Jenatton, R., Bach, F., d’Aspremont, A.: Convex relaxations for permutation problems. In: Advances in Neural Information Processing Systems, pp. 1016–1024 (2013)

  14. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  Google Scholar 

  15. Glowinski, R., Marroco, A.: Sur approximation, par elements finis dordre un, et la resolution, par penalisation-dualite, dune classe de problemes de Dirichlet non lineares. Revue Francaise dAutomatique, Informatique et Recherche Operationelle 9(R–2), 41–76 (1975)

    MATH  Google Scholar 

  16. Optimization, I. Gurobi: Gurobi Optimizer Reference Manual (2016)

  17. Han, J.Y., Sun, D.F.: Newton and quasi-Newton methods for normal maps with polyhedral sets. J. Optim. Theory Appl. 94, 659–676 (1997)

    Article  MathSciNet  Google Scholar 

  18. Hager, W.W., Zhang, H.: Projection onto a polyhedron that exploits sparsity. SIAM J. Optim. 26, 1773–1798 (2016)

    Article  MathSciNet  Google Scholar 

  19. Higham, N.: Computing the nearest symmetric correlation matrix-a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002)

    Article  MathSciNet  Google Scholar 

  20. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29, 615–631 (1977)

    Article  MathSciNet  Google Scholar 

  21. Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with \({C}^{1,1}\) data. Appl. Math. Optim. 11, 43–56 (1984)

    Article  MathSciNet  Google Scholar 

  22. Jiang, B., Liu, Y.F., Wen, Z.W.: \(L_p\)-norm regularization algorithms for optimization over permutation matrices. SIAM J. Optim. 26, 2284–2313 (2016)

    Article  MathSciNet  Google Scholar 

  23. Li, X.D., Sun, D.F., Toh, K.-C.: QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming. Math. Program. Comput. 10, 703–743 (2018)

    Article  MathSciNet  Google Scholar 

  24. Li, X.D., Sun, D.F., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM J. Optim. 28, 433–458 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lim, C.H., Wright, S.J.: Beyond the Birkhoff polytope: convex relaxations for vector permutation problems. In: Advances in Neural Information Processing Systems, pp. 2168–2176 (2014)

  26. Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26, 272–284 (2004)

    Article  MathSciNet  Google Scholar 

  27. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim. 22, 277–293 (1984)

    Article  MathSciNet  Google Scholar 

  28. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  29. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  30. Pang, J.-S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)

    Article  MathSciNet  Google Scholar 

  31. Pang, J.-S., Ralph, D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21, 401–426 (1996)

    Article  MathSciNet  Google Scholar 

  32. Qi, H., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)

    Article  MathSciNet  Google Scholar 

  33. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  34. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: Mathematical Programming at Oberwolfach, vol. 14 of Mathematical Programming Studies, pp. 206–214 . Springer, Berlin Heidelberg (1981)

    Google Scholar 

  35. Robinson, S.M.: Implicit B-differentiability in generalized equations. Technical Report #2854, Mathematics Research Center, University of Wisconsin, Madison (1985)

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  37. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    Article  MathSciNet  Google Scholar 

  38. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  Google Scholar 

  39. Sun, D.F., Han, J.Y., Zhao, Y.: On the finite termination of the damped-Newton algorithm for the linear complementarity problem. Acta Math. Appl. Sin. 21, 148–154 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Sun, J.: On Monotropic Piecewise Quadratic Programming. Ph.D. thesis, Department of Mathematics, University of Washington (1986)

  41. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  42. Von Neumann, J.: A certain zero-sum two-person game equivalent to an optimal assignment problem. Ann. Math. Stud. 28, 5–12 (1953)

    MathSciNet  Google Scholar 

  43. Wang, F., Li, P., Konig, A.C.: Learning a bi-stochastic data similarity matrix. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp  551–560

  44. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57, 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  45. Zhao, X., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20, 1737–1765 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Jong-Shi Pang at University of Southern California for his helpful comments on an early version of this paper and the referees for helpful suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Chuan Toh.

Additional information

The research of Defeng Sun was supported in part by a start-up research grant from the Hong Kong Polytechnic University. The research of Kim-Chuan Toh was supported in part by the Ministry of Education, Singapore, Academic Research Fund under Grant R-146-000-257-112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, D. & Toh, KC. On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope. Math. Program. 179, 419–446 (2020). https://doi.org/10.1007/s10107-018-1342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1342-9

Keywords

Mathematics Subject Classification

Navigation