Skip to main content
Log in

Problem-based optimal scenario generation and reduction in stochastic programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Scenarios are indispensable ingredients for the numerical solution of stochastic programs. Earlier approaches to optimal scenario generation and reduction are based on stability arguments involving distances of probability measures. In this paper we review those ideas and suggest to make use of stability estimates based only on problem specific data. For linear two-stage stochastic programs we show that the problem-based approach to optimal scenario generation can be reformulated as best approximation problem for the expected recourse function which in turn can be rewritten as a generalized semi-infinite program. We show that the latter is convex if either right-hand sides or costs are random and can be transformed into a semi-infinite program in a number of cases. We also consider problem-based optimal scenario reduction for two-stage models and optimal scenario generation for chance constrained programs. Finally, we discuss problem-based scenario generation for the classical newsvendor problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33, 544–562 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Birge, J.R., Wets, R.J.-B.: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration—the Quasi-Monte Carlo way. Acta Numerica 22, 133–288 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Dohan, D., Karp, S., Matejek, B.: K-median algorithms: theory in practice. Working paper, Princeton, Computer Science (2015)

  5. Dokov, S.P., Morton, D.P.: Second-order lower bounds on the expectation of a convex function. Math. Oper. Res. 30, 662–677 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Dudley, R.M.: The speed of mean Glivenko–Cantelli convergence. Ann. Math. Stat. 40, 40–50 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Dudley, R.M.: Real Analysis and Probability. Chapman & Hall, New York (1989)

    MATH  Google Scholar 

  8. Dupačová, J.: Scenario based stochastic programs: Strategies for deleting scenarios, IIASA Working Paper WP-95-014 (1995)

  9. Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Edirisinghe, N.C.P.: New second-order bounds on the expectation of saddle functions with applications to stochastic linear programming. Oper. Res. 44, 909–922 (1996)

    MATH  Google Scholar 

  12. Edirisinghe, N.C.P., Ziemba, W.T.: Bounding the expectation of a saddle function with application to stochastic programming. Math. Oper. Res. 19, 314–340 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Feng, Y., Ryan, S.M.: Scenario construction and reduction applied to stochastic power generation planning. Comput. Oper. Res. 40, 9–23 (2013)

    MATH  Google Scholar 

  14. Frauendorfer, K.: Solving SLP recourse problems with arbitrary multivariate distributions—the dependent case. Math. Oper. Res. 13, 377–394 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  16. Graf, S., Luschgy, H.: Foundations of quantization for probability distributions. Lecture Notes in Mathematics, vol. 1730. Springer, Berlin (2000)

  17. Guerra Vázquez, F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Comput. Appl. Math. 217, 394–419 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Lett. 35, 731–738 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comput. Optim. Appl. 43, 67–93 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Henrion, R., Küchler, C., Römisch, W.: Discrepancy distances and scenario reduction in two-stage stochastic integer programming. J. Ind. Manag. Optim. 4, 363–384 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Hettich, R., Zencke, P.: Numerische Methoden der Approximation und Semi-Infiniten Optimierung. Teubner, Stuttgart (1982)

  24. Homem-de-Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19, 56–85 (2014)

    MathSciNet  Google Scholar 

  25. Kall, P.: Stochastic programming with recourse: upper bounds and moment problems. In: Guddat, J. (ed.) Advances in Mathematical Optimization, pp. 86–103. Akademie-Verlag, Berlin (1988)

    Google Scholar 

  26. Kall, P., Mayer, J.: Stochastic Linear Programming, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  27. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems, II: the \(p\)-medians. SIAM J. Appl. Math. 37, 539–560 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Klatte, D.: A note on quantitative stability results in nonlinear optimization. In: Lommatzsch, K. (ed.) Proceedings of the 19. Jahrestagung Mathematical Optimization. Humboldt-Universität Berlin, Sektion Mathematik, Seminarbericht Nr. 90, pp. 77–86 (1987)

  29. Leövey, H., Römisch, W.: Quasi-Monte Carlo methods for linear two-stage stochastic programming problems. Math. Program. 151, 315–345 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Li, S., Svensson, O.: Approximating \(k\)-median via pseudo-approximation. SIAM J. Comput. 45, 530–547 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122, 247–272 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Morales, J.M., Pineda, S., Conejo, A.J., Carrion, M.: Scenario reduction for futures market trading in electricity markets. IEEE Trans. Power Syst. 24, 878–888 (2009)

    Google Scholar 

  33. Pagès, G.: A space vector quantization method for numerical integration. J. Comput. Appl. Math. 89, 1–38 (1997)

    MATH  Google Scholar 

  34. Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numer. Math. 100, 141–163 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Pflug, G.C., Pichler, A.: Approximations for probability distributions and stochastic optimization problems. In: Bertocchi, M.I., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy, pp. 343–387. Springer, New York (2011)

    MATH  Google Scholar 

  36. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Hoboken (1991)

    MATH  Google Scholar 

  37. Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27, 792–818 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. I. Springer, Berlin (1998)

    MATH  Google Scholar 

  39. Reemtsen, R.: Discretization methods for the solution of semi-infinite programming problems. J. Optim. Theory Appl. 71, 85–103 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Rückmann, J.-J. (eds.) Semi-Infinite Programming, pp. 195–275. Kluwer, Boston (1998)

    MATH  Google Scholar 

  41. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    MathSciNet  MATH  Google Scholar 

  42. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  43. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.)Stochastic Programming. Handbooks in Operations Research and Management Science, Volume 10, Elsevier, Amsterdam, pp. 483–554 (2003)

  44. Römisch, W.: Scenario generation. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2010)

    Google Scholar 

  45. Römisch, W., Wets, R.J.-B.: Stability of \(\varepsilon \)-approximate solutions to convex stochastic programs. SIAM J. Optim. 18, 961–979 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constraints knapsack polyhedra. Math. Program. 93, 195–215 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Ruszczyński, A., Shapiro, A. (eds.): Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003)

  48. Schwientek, J., Seidel, T., Küfer, K.-H.: A transformation-based discretization method for solving general semi-infinite optimization problems. Optim. Online Dig. (2017)

  49. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming, MPS-SIAM Series on Optimization, Second Edition, Philadelphia (2014)

  50. Stein, O.: Bi-level Strategies in Semi-infinite Programming. Kluwer, Boston (2003)

    MATH  Google Scholar 

  51. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Still, G.: Generalized semi-infinite programming: numerical aspects. Optimization 49, 223–242 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer linear programming formulations for probabilistic constraints. Oper. Res. Lett. 40, 153–158 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Walkup, D., Wets, R.J.-B.: Lifting projections of convex polyhedra. Pac. J. Math. 28, 465–475 (1969)

    MathSciNet  MATH  Google Scholar 

  55. Wets, R.J.-B.: Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev. 16, 309–339 (1974)

    MathSciNet  MATH  Google Scholar 

  56. Zhao, M., Huang, K., Zeng, B.: A polyhedral study on chance constrained programs with random right-hand side. Math. Program. 166, 19–64 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges support by the FMJH Program Gaspard Monge in optimization and operations research including support to this program by EDF. Both authors wish to thank the referees and the Guest Editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Römisch.

Additional information

Dedicated to the memory of Jitka Dupačová

Appendix

Appendix

We consider semi-infinite programs of the form

$$\begin{aligned} P[V]\qquad \min \{g_{0}(u):u\in U,\,g_{j}(u,v)\le 0,\,j=1,\ldots ,p,\, \forall v\in V\}, \end{aligned}$$

where \(U\subset \mathbb {R}^{m}\) is closed, \(V\subset \mathbb {R}^{k}\) is compact and the functions \(g_{0}:U\rightarrow \mathbb {R}\), \(g_{j}:U\times V\rightarrow \mathbb {R}\), \(j=1,\ldots ,p\), are continuous. Let \(V_{i}\), \(i\in \mathbb {N}_{0}\), be an increasing sequence of finite subsets of V such that \(\lim _{i\rightarrow \infty }\sup _{v\in V}\min _{v_{i}\in V_{i}}\Vert v-v_{i}\Vert =0\).

  • Discretization algorithm:

  • Step 0: Set \(i=0\), \(D_{0}=V_{0}\).

  • Step 1: Find a solution \(u_{i}\) of \(P[D_{i}]\).

  • Step 2: Find a solution \(v_{i}\) of \(\max _{v\in V_{i+1}} \max _{j=1,\ldots ,p}g_{j}(u_{i},v)\).

  • Step 3: If \(\gamma _{i}=\max _{j=1,\ldots ,p}g_{j}(u_{i},v_{i})>0\), then select a set \(D_{i+1}\) such that

    $$\begin{aligned} D_{i}\cup \{v_{i}\}\subseteq D_{i+1}\subseteq V_{i+1}. \end{aligned}$$
  • Step 4: If \(\gamma _{i}\le 0\) then stop.

  • Step 5: Set \(i=i+1\) and go to Step 1.

If the feasible set F[V] of P[V] is nonempty and the level set \(\{u\in F[V_{0}]:g_{0}(u)\le g_{0}(u_{0})\}\) is bounded for some \(u_{0}\in F[V]\), the infima of \(P[D_{i}]\) converge to the infimum of P[V] and the sequence \((u_{i})\) has an accumulation point which solves P[V]. For a proof of this result we refer to [39, Theorem 2.1] and for further information and discussion to [40].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrion, R., Römisch, W. Problem-based optimal scenario generation and reduction in stochastic programming. Math. Program. 191, 183–205 (2022). https://doi.org/10.1007/s10107-018-1337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1337-6

Navigation